प्रश्नपुस्तिका क्रमांक BOOKLET No. 2019

प्रश्नपुस्तिका

Z12

संच क्र

मराठी, इंग्रजी, सामान्य अध्ययन आणि अभियांत्रिकी अभियोग्यता चाचणी

एकूण प्रश्न : 100 एकूण गुण : 100

वेळ : $1\frac{1}{2}$ (दीड) तास

माराष्ट्र अकियासिकी सेवा संयुक्त

सूचना (५व) प- 2010

(1) सदर प्रश्नपुस्तिकेत 100 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. असा तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकडून लगेच बदलून घ्यावी.

(2) आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा.

(3) वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे न विसरता नमूद करावा.

- (4) (अ) या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवरील सूचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नमूद करावा. अशा प्रकारे उत्तरपत्रिकेवर उत्तरक्रमांक नमूद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
 - (ब) आयोगाने ज्या विषयासाठी मराठी बरोबर इंग्रजी माध्यम विहित केलेले आहे. त्याच विषयाचा प्रत्येक प्रश्न मराठी बरोबर इंग्रजी भाषेत देखील छापण्यात आला आहे. त्यामधील इंग्रजीतील किंवा मराठीतील प्रश्नामध्ये मुद्रणदोषांमुळे अथवा अन्य कारणांमुळे विसंगती निर्माण झाल्याची शंका आल्यास, उमेदवाराने संबंधित प्रश्न पर्यायी भाषेतील प्रश्नाशी ताडून पहावा.
- (5) <u>सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत.</u> घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालविता पुढील प्रश्नाकडे वळावे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- (6) उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- (7) प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच ''उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची दिलेल्या चार उत्तरापैकी सर्वात योग्य उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील''.

ताकीढ

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपयंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपयंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या "परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82" यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनिधकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरूद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

पुढील सूचना प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर पहा

कच्च्या कामासाठी जागा/SPACE FOR ROUGH WORK

1.	'बाजीरावाचा नातू असणे' या वाक्प्रचाराचा अर्थ सांगा										
	(1) ·	(1) श्रीमंत माणूस									
	(2)	वशिल्य	ाचा माणृ	्स							
	(3)	मिजास	खोर माण्	्र्स							
	(4)	अति र	तांबचा वि	ह्वा दूरचा व	माणूस						
2.	 कुली	 नहाशब	 द शब्दिस	— — — गद्धीच्या को	— — — — णत्या उपप्रकारा	ातील आहे ?					
	(1)	उपसर्ग	घटीत			(2)	शब्दसाधित				
	(3)	अभ्यस	त			(4)	सामासिक				
 3.	समान	— - गर्थी शब	— - दाच्या जो	 ड्या लावा	:						
		'37'			'ब'						
	अ.	फूल		i.	एकाक्ष						
	ब.	कावळ	រា	ii.	अंडज						
	क.	डोळा		iii.	सुम						
	ड.	पक्षी		iv.	चक्षू						
	पर्याः	यी उत्तरे	:								
		अ	ब	क	ड						
	(1)	iv	i	ii	iii						
	(2)	ii	iii	i	iv						
	(3)	iii	i	iv	ii						
	(4)	i	ii	iii	iv						
4.	'वशि	——– ाला अस	लेली मा	 गसं मोठया	पदावर सहज ज	नातात', या व	— – त्राक्यातील उद्देश्यविस्तार	——————— ओळखा.			
	अ.										
	ब.	वशिल	॥ असले	त्ती माणसं							
	क.	वशिल	Π								
	ड.	वशिल	п असले	ली							
	(1)	फक्त	ड बरोबर								
	(2)	फक्त	ब बरोबर								

(3) ब आणि ड बरोबर

(4) फक्त क बरोबर

- 5. 'कोल्हा काकडीला राजी' या म्हणीचे समर्पक स्पष्टीकरण कोणते ?
 - अ. जे मिळाले तेवढयात समाधान असणे.
 - ब. वाईट गोष्ट ही शेवटपर्यंत वाईटच असते.
 - क. क्षुद्र माणसे क्षुद्र वस्तुंना भाळतात.
 - ड. गर्विष्ट माणसाला शेवटी अपमानित होण्याची पाळी येते.

पर्यायी उत्तरे:

- (1) फक्त अ आणि ब बरोबर
- (2) फक्त ब बरोबर
- (3) फक्त क बरोबर
- (4) फक्त अ आणि ड बरोबर

प्र. क्र 6 ते 10 उतास्यावरी प्रश्न :

आधुनिक काळात सहकार हा जीवनाचा मार्ग झाला आहे. सध्याच्या स्पर्धेमध्ये सहकारच टिकू शकते. सहकारातून बऱ्याच सहकारी संस्थांनी उभारी घेतली आहे. त्या संस्थांनी फार मोठा परिसर विकासाच्या क्षेत्राखाली आणला आहे. जागतिकीकरणाच्या प्रक्रियेत उद्योग आणि सेवा या दोन्ही क्षेत्रावर दूरगामी परिणाम होत आहेत. सहकारी चळवळ ही देखील त्याला अपवाद राहणार नाही. म्हणून आपली सहकारी चळवळ दुर्बल बनता कामा नये, याकडे लक्ष पुरविणे आवश्यक आहे. आपली ग्रामीण आणि कृषिप्रधान अर्थरचना सहकारी चळवळीमुळेच सशक्त बनू शकते आणि ही अर्थरचना सशक्त राहिली तरच भारतीय अर्थकारणाचा कणा मजबूत राहू शकतो.

सहकारी क्षेत्रातील उणिवांकडे लक्ष दिले पाहिजे. सहकारी क्षेत्रातील काही घोटाळ्यांमुळे ती चळवळच पूर्णतः कुचकामी आहे असे समजणे दुदैवी ठरेल. सहकारी चळवळीतील उणिवा लक्षात घेऊन त्यांच्या क्षमतांचा विकास करणे अगत्याचे आहे. सहकारी चळवळीमध्ये नव्या युगाला पोषक बदल घडवून आणांवा लागेल. त्यासाठी त्यामध्ये सुधारणा कराव्या लागतील. त्या सुधारणांसाठी स्वातंत्र्य देऊन नवीन दृष्टिकोन स्वीकारला पाहिजे. परिवर्तनाचे आव्हान स्वीकारले पाहिजे. आपणास प्रभावीपणे पेलेल अशी सहकारी तत्त्वांची भक्कम पायाची पुन:स्थापना केली पाहिजे.

सहकारी चळवळ ही नैतिक आणि आध्यात्मिक सद्गुणांवर उभारलेली चळवळ आहे. आज त्यातील नैतिक व आध्यात्मिक जाणिवांची दुर्बलता प्रकर्षाने जाणवत आहे. या क्षेत्रात ज्या महर्षीनी कार्य केले उदा. श्री. वैकुंठभाई मेहता, श्री. धनंजयराव गाडगीळ अशांची उणीव अद्याप भरून निघालेली नाही. या थोर विभूतींच्या प्रतिष्ठेला साजेल अशा नैतिक व बौद्धिक क्षमतेच्या व्यक्तींची आज नितात गरज आहे. सहकार क्षेत्रात प्रगत आणि प्रशिक्षित मनुष्यबळाचा अभाव आहे. सहकारी संस्थांना सामर्थ्य प्रदान करण्याची गरज आहे. बदलत्या वातावरणात सहकारी चळवळ टिकावी, वाढीवी आणि तिला बलशाही रूप प्राप्त व्हावे म्हणून तिला सक्षम करण्याच्या उपायांचा शोध घेणे आवश्यक आहे. त्या चळवळीचा त्याग करण्याची गरज नाही. प्रभावशाली यंत्रणा निर्माण करून त्या चळवळीला नवीन सैद्धांतिक मांडणी करण्याची संधी प्राप्त करून देण्याची गरज आहे.

6.	सहक	ारी चळवळीताल क्षमताचा विकास करण्यासाठा कराकिङ लेक दिल पार्टण :	
	(1)	उणिवा	
	(2)	सामर्थ्य	
	(3)	घोटाळे	
	(4)	राजकारण	
7.	सहक	जरी चळवळीत कोणत्या जाणिवांची उणीव आहे ?	_
	(1)	राजकीय व भक्तीपर	
	(2)	नैतिक व आध्यात्मिक	
	(3)	साहित्य व सांस्कृतिक	
	(4)	विकास व सुधारणावादी	
8.	सहव	नारी संस्था सामर्थशाळी होण्यासाठी कशाची गरज आहे ?	
	(1)	प्रशिक्षित मनुष्यबळ	
	(2)	आधुनिक तंत्रज्ञान	
	(3)	सैद्धांतिक मांडणी	
	(4)	व्यावहारिक उपाययोजना	
9.	या उ	उताऱ्याला योग्य शीर्षक या	
	(1)	सहकार	
	(2)	समस्या आणि सहकार	
	(3)	सहकार महर्षी	
	(4)	सहकारी चळवळीची पुन:स्थापना	
10.	सेवा	आणि उद्योग या क्षेत्रांवर कशाचा दूरगामी परिणाम होत आहे ?	
	(1)	औद्योगिकरण	
	(2)	भांडवलशाही	
	(3)	जागतिकीकरण	
	(4)	मुक्त अर्थव्यवस्था	
		ENTAL SPACE FOR POLICE WORK	

11. You could forgive all his asperities when he smiled. Identify the correct meaning of the word underlined. **(1)** cruelty malignity **(3)** malice **(4)** roughness 12. Choose the correct word which is the most opposite to the meaning of the underlined word in the sentence. At night much of the activity comes to **rest**. **(1)** cessation **(2)** tranquility (3) exertion pause (4)13. Match the synonyms: I. agile royal a. permanent b. human II. III. active majestic c. IV. gentle d. perennial d b \mathbf{c} III Ι (1) Γ V II Ι IVII (2)III II **(3)** III IVĬ I (4) IVШ II All his efforts proved to be a mare's nest in the long run. 14. Identify the correct meaning of the underlined. **(1)** irrelevant **(2)** unimportant (3)worthless **(4)** insincere He is a man of the world. His honest advice will help us a lot. 15. Identify the correct meaning of the underlined.

- (1) an important person
- (2) an experienced person
- (3) a social person
- (4) a genius

Read the following passage carefully and choose the most correct option given below each question. (Q. No. 16 to 20)

The third great defect of our civilization is that it does not know what to do with its knowledge. Science has given us powers fit for the gods, yet we use them like small children. For example, we do not know how to manage our machines. Machines were made to be man's servants; yet he has grown so dependent on them that they are in a fair way to become his masters. Already most men spend most of their lives looking after and waiting upon machines. And the machines are very sterm masters. They must be fed with coal, and given petrol to drink, and oil to wash with, and they must be kept at the right temperature. And if they do not get their meals when they expect them, they grow sulky and refuse to work, or burst with rage, and blow up, and spread ruin and destruction all around them. So we have to wait upon them very attentively and do all that we can to keep them in a good temper. Already we find it difficult either to work or play without the machines, and a time may come when they will rule us altogether, just as we rule the animals.

And this brings me to the point at which I asked, "What do we do with all the time which the machines have saved for us, and the new energy they have given us ?" On the whole, it must be admitted, we do very little. For the most part we use our time and energy to make more and better machines; but more and better machines will only give us still more time and still more energy, and what are we to do with them? The answer, I think, is that we should try to become more civilized. For the machines themselves, and the power which the machines have given us, are not civilization but aids to civilization. But you will remember that we agreed at the beginning that being civilized meant making and linking beautiful things, thinking freely, and living rightly and maintaining justice equally between man and man. Man has a better chance today to do these things than he ever had before; he has more time, more energy, less to fear and less to fight against. If he will give his time and energy which his machines have won for him to making more beautiful things, to finding out more and more about the universe, to removing the causes of quarrels between nations, to discovering how to prevent poverty, then I think our civilization would undoubtedly be the greater, as it would be the most lasting that there has ever been. CEM JOAD

- 16. The machines themselves and the powers they have given to us _____
 - a. are nothing but civilization.
 - b. are only the aids to civilization.
 - c. are only to multiply the production.
 - d. are ways to make the people wealthy.

Answer options:

- (1) 'a' and 'c' are correct
- (2) 'a' and 'd' are correct

(3) 'b' is correct

(4) 'c' is correct

74	•
,	_

17.	The	passage is about								
	a.	a. civilization.								
	b.	only the defects of civilization.								
	c.	making the things more beautiful	using t	he power given by machines.						
	d.	removing the causes of quarrels be	tween	the nations and overcoming poverty.						
	Ans	Answer options:								
	(1)	Only 'a' is correct	(2)	Only 'b' is correct						
	(3)	'a', 'c' and 'd' are correct	(4)	'b', 'c' and 'a' are correct						
18.	We	We use, according to the writer, the powers that are given by science unlike								
	a.	God								
	b.	small children								
	c.	servants								
	d.	masters								
	Answer options:									
	(1)	Only 'b' is correct	(2)	Only 'c' is correct						
	(3)	'a' and 'b' are correct	(4)	'c' and 'd' are correct						
19.	If th	If the machines do not get their meal in time, they will								
	a.	grow sulky and refuse to work.								
	b.	obey their masters.								
	c.	burst with rage and blow up.								
	$\mathbf{d}.$	not cause ruin and destruction.								
	Ans	swer options :								
	(1)	'a' and 'b' are correct		'b' and 'c' are correct						
	(3)	'c' and 'd' are correct	(4)	'a' and 'c' are correct						
20.	We	all agree that being civilized means								
	a.	earning more and more money.								
	b.	making and linking beautiful thing	gs.							
	c.	grabbing property of others.								
	d.	maintaining justice equally betwee	en mer	and women.						
	Ans	swer options :		() 10						
	(1)									
	(3)	'c' and 'd' are correct	(4)	'd' and 'a' are correct						

21. खालील विधाने विचारात घ्या :

- अ. सरासरी ग्राहक किंमत निर्देशांक भाववाढ 2014-15 मध्ये 5.9% पासून 2015-16 मध्ये 4.9% घटली.
- ब. सरासरी किंमतवाढ आधारित घाऊक किंमत चा निर्देशांक 2014-15 मध्ये 2∙0% पासून 2015-16 मध्ये (उणे) 2∙5% नी घटला.
- क. एप्रिल डिसेंबर 2016 या काळात सरासरी किंमतवाढ 2.9% होती.

वरीलपैकी कोणते/ती विधान/ने बरोबर आहे/त?

(1) अवब

(2) बवक

(3) अवक

(4) वरीलपैकी सर्व

Consider the following statements:

- a. The average C.P.I. inflation declined to 4.9% in 2015-16 from 5.9% in 2014-15.
- b. The average inflation based on the Whole-sale Price Index declined to (-) 2.5% in 2015 16 from 2.0% in 2014 15.
- c. The average inflation was 2.9% during April December 2016.

Which of the statement/s given above is/are correct?

(1) a and b

(2) b and c

(3) a and c

(4) All of the above

22. खालील विधाने विचारात घ्या :

- अ. भारतीय नियोजन हे सुचक आर्थिक नियोजन आहे.
- ब. भारतीय नियोजन हे भौतिक नियोजन आहे.
- क. भारतीय नियोजन हे सामाजिक नियोजन आहे.

वरीलपैकी कोणते/ती विधान/ने बरोबर आहे/त ?

(1) अवब

(2) **बवक**

(3) अवक

(4) वरीलपैकी सर्व

Consider the following statements:

- a. Indian planning is indicative economic planning.
- b. Indian planning is physical planning.
- Indian planning is social planning.

Which of the statements given above are correct?

(1) a and b

(2) b and c

(3) a and c

(4) All of the above

				A
23.	वस्तु	च्या आयात व निर्यातीवर लावल्या जाणाऱ्या करार	ਰ	असे म्हणतात.
	(1)	सीमा शुल्क	(2)	अबकारी कर
	(3)	मुल्यवर्धित कर	(4)	वस्तू आणि सेवा कर
	The	e tax imposed on import and export of	comr	modities is called as
	(1)	Custom duties	(2)	Excise duties
	(3)	VAT	(4)	GST
24.	मागी तांदुब	ल कांही वर्षात आवश्यक अन्नधान्याची बाजार किं उ व गव्हाची विक्री केली जाते.	मत सि	थर ठेवण्यासाठी द्वारे खुल्या बाजारात
	(1)	एफ्.सी.आय.	(2)	नाबार्ड
	(3)	ए.पी.एम्.सी.	(4)	नाफेड
				open market sale of rice and wheat to
		ek market price of these essential food	-grai	ns.
	(1)	FCI	(2)	NABARD
	(3)	APMC	(4)	NAFED
25.	स्वातं	त्र्यपूर्व काळात भारताची सर्वाधिक निर्यात कोणत्या	देशाव	डे होती ?
	(1)	रशिया	(2)	जपान
	(3)	ब्रिटन	(4)	अमेरिका
	To w	which country India exported the most	, befo	ore independence ?
	(1)	Russia	(2)	Japan
	(3)	Britain	(4)	U.S.A.
26.	भारता	च्या दहाव्या पंचवार्षिक योजनेत वार्षिक विकास द	राचे उ	द्विष्ट किती ठेवण्यात आले होते ?
	(1)	7 टक्के	(2)	8 टक्के
	(3)	9 टक्के	(4)	10 टक्के
	How	much annual growth rate was target	ed in	Tenth Five Year Plan of India?
	(1)	7 per cent	(2)	8 per cent
	(3)	9 per cent	(4)	10 per cent
_				

27.	सरपंचपदाची निवडणूक थेट जनतेद्वारे खालीलपैकी कोणकोणत्या राज्यात होते ? अ. मध्यप्रदेश							
		•						
	ब. 	गुजरात						
	क.	महाराष्ट्र						
	(1)	फक्त अ	(2)	फक्त ब आणि क				
	(3)	अ, ब आणि क	(4)	फक्त अ आणि क				
	In v	which of the following States, election	to th	e post of Sarpanch is made directly by				
	the	people ?						
	a.	Madhya Pradesh						
	b.	Gujarat						
	c.	Maharashtra	<i>(</i> -)					
	(1)	Only a	(2)	Only b and c				
	(3)	a, b and c	(4)	Only a and c				
28.	ग्रामी	ग पायाभूत सुविधा विकास निधि (RIDF) खाली	लपैकी	कोणी उभारला ?				
	(1)	नाबार्ड	(2)	आर.बी.आय.				
	(3)	भारत सरकार	(4)	अर्थ मंत्रालय				
		al Infrastructure Development Fundament?	d (R	IDF) was instituted by which of the				
	(1)	NABARD	(2)	RBI				
	(3)	Government of India	(4)	Finance Ministry				
29.	अमेरिकेने नुकतेच 'इस्लामिक रिव्हॉल्यूशनरी गार्ड कोअर' नामक सेनेला दहशतवादी संघटना घोषित केले आहे. ती कोणत्या देशाशी संबंधित आहे ?							
	(1)	इराण	(2)	पाकिस्तान				
	(3)	सिरिया	(4)	अफगाणिस्तान				
	The	United States has recently declar	· - /	n army called 'Islamic Revolutionary				
		ard Corps' as a terrorist organisation.						
	(1)	Iran	(2)	Pakistan				
	(3)	Syria	(4)	Afghanistan				
30.	201 मतदा	9 च्या सार्वत्रिक निवडणूकी दरम्यान महाराष्ट्रार्त र होते ?	ल पुर्ढ	ोलपैकी कोणत्या लोकसभा मतदारसंघात सर्वाधिक				
	(1)	मुंबई-दक्षिण	(2)	ठाणे				
	(3)	गडचिरोली-चिमूर	(4)	रत्नागिरी-सिंधूदुर्ग				
	Whi duri	ch of the following Lok Sabha consti ing 2019 general elections ?	tuenc	ies in Maharashtra had largest voters				
	(1)	Mumbai - South	(2)	Thane				
	(3)	Gadchiroli – Chimur	(4)	Ratnagiri – Sindhudurg				
		0		<u>. </u>				

31.	201	9 मध्ये निर्वाचित झालेल्या स्लोवाकियाच्या पहिल	या महि	ला राष्ट्रपतीचे नांव काय ?					
	(1)	निना जॉर्ज	(2)	मेडी फॉक्स					
	(3)	जुजाना कैपुतोवा	(4)	एलुआना लार्स					
	Who	o was elected the first woman Preside	nt of	Slovakia in 2019 ?					
	(1)	Nina Jorge	(2)	Medie Fox					
	(3)	Zuzana Caputova	(4)	Eluna Lars					
32.	2019	9 हे वर्ष महाराष्ट्रातील तीन नामवंत व्यक्तींचे जन्म	शतार्ब्द	वर्ष म्हणून साजरे होत आहे. ते म्हणजे					
,	(1)	्पु.ल. देशपांडे – ग.दि. माडगूळकर – राजा परां	जपे						
	(2)	बाबा आमटे – पु.ल. देशपांडे – राजा नवाथे							
	(3)	सुधीर फडके – पु.ल. देशपांडे – ग.दि. माडगूळ	कर						
	(4)	सुधीर फडके – कुमार गंधर्व – प्र.के. अत्रे							
		narashtra is celebrating birth centen y are	ary o	f three eminent personalities in 2019.					
	(1)								
	(2)								
	(3)	Sudhir Phadke - P.L. Deshpande -	Phadke – P.L. Deshpande – G.D. Madgulkar						
	(4)	Sudhir Phadke – Kumar Gandharv	a – P	.K. Atre					
 33.	2019	े हे वर्ष ह्या ऐतिहासिक घटनेचे शत	 ाब्दी व	र्भ आहे.					
	(1)	लंडन येथे भारतीय होमरूल सोसायटीची स्थापन	ſ						
	(2)	टिळकांची मंडाले कारागृहात हद्दपारी							
	(3)	मीठाचा सत्याग्रह							
	(4)	जालीयनवाला बाग हत्याकांड							
	2019	2019 is the centenary year of the historical event of							
	(1)								
	(2)	(2) Deportation of Tilak to Mandalay Jail							
	(3)								
	(4)	Jalianwala Bagh Massacre							
34.	2019	मध्ये भारताच्या पहिल्या लोकपालपदी कोणाची							
	(1)	न्यायमूर्ति दीपक मिश्रा		न्यायमूर्ति दिलीप भोसले					
	(3)	न्यायमूर्ति अजयकुमार त्रिपाठी	(4)	न्यायमूर्ति पिनाकी चंद्र घोष					
	Who	o was appointed the first Lokpal of In							
	(1)	Justice Dipak Mishra	(2)	Justice Dilip Bhosale					
	(3)	Justice Ajaykumar Tripathi	(4)	Justice Pinaki Chandra Ghose					
 कच्च्य	 ा कामार	पाठी जागा / SPACE FOR ROUGH WORK							

- 35. भारतीय कृषी आयोगाच्या मते अवर्षणचे प्रकार कोणते ?
 - अ. वातावरणीय अवर्षण, जलीय अवर्षण, कृषी अवर्षण
 - ब. वातावरणीय अवर्षण, जलीय अवर्षण
 - क. कृषी अवर्षण, तीव्र अवर्षण, जलीय अवर्षण
 - ड. साधारण अवर्षण, तीव्र अवर्षण, कृषी अवर्षण वरीलपैकी कोणते विधान/विधाने बरोबर आहे ?
 - (1) फक्त अ

(2) फक्त ब आणि क

(3) फक्त अ आणि ब

(4) फक्त ड

What are the types of droughts as per 'Krishi Ayog' of India?

- a. Meteorological drought, Hydrological drought, Agricultural drought.
- b. Meteorological drought, Hydrological drought.
- c. Agricultural drought, Intense drought, Hydrological drought.
- d. Normal drought, Intense drought, Agricultural drought

Which of the statements given above is/are correct?

(1) Only a

(2) Only b and c

(3) Only a and b

- (4) Only d
- 36. खालीलपैकी कोणत्या राज्यांना सरदार सरोवर जलिसंचनासाठी पाणी पुरवेल ?
 - (1) गुजरात मध्य प्रदेश
 - (2) महाराष्ट्र गुजरात
 - (3) गुजरात राजस्थान
 - (4) राजस्थान पंजाब

Sardar Sarovar will provide water for irrigation to which of the following states?

- (1) Gujarat Madhya Pradesh
- (2) Maharashtra Gujarat
- (3) Gujarat Rajasthan
- (4) Rajasthan Punjab

(1) गोपाळ गणेश आगरकर (2) डॉ. बाबासाहेब आंबेडकर (3) न्यायमूर्ति रानडे (4) महात्मा ज्योतिराव फुले Write the name of social reformer who was impressed by writings of Thomas Paine. (1) Gopal Ganesh Agarkar (2) Dr. Babasaheb Ambedkar (3) Justice Mr. Ranade (4) Mahatma Jyotirao Phule 38. संयुक्त महाराष्ट्र चळवळीला पाठिंबा म्हणून कोणी केंद्र सरकारच्या अर्थमंत्री पादाचा राजीनामा दिला ? (1) यशवंतराव चल्हाण (2) बाळासाहेब खेर (3) सी.डी. देशमुख (4) के.एम. पात्रेकर Who resigned from the post of Finance Minister of India to support the Sanyukta Maharashtra movement ? (1) Yeshwantrao Chavan (2) Balasaheb Kher (3) C.D. Deshmukh (4) K.M. Pannikar 39	37.	थॉमस	न पेनच्या लिखाणाने प्रभावित झालेल्या समाज सुध	गारका चे	नाव सांगा.				
Write the name of social reformer who was impressed by writings of Thomas Paine. (1) Gopal Ganesh Agarkar (2) Dr. Babasaheb Ambedkar (3) Justice Mr. Ranade (4) Mahatma Jyotirao Phule 38. संबुक्त महाराष्ट्र चळवळीला पार्टिबा म्हणून कोणी केंद्र सरकारच्या अर्थमंत्री पादाचा राजीनामा दिला ? (1) यशवंतराव चल्हाण (2) बाळासाहेब खेर (3) सी.डी. देशमुख (4) के.एम. पानेकर Who resigned from the post of Finance Minister of India to support the Sanyukta Maharashtra movement? (1) Yeshwantrao Chavan (2) Balasaheb Kher (3) C.D. Deshmukh (4) K.M. Pannikar 39		(1)	गोपाळ गणेश आगरकर	(2)	डॉ. बाबासाहेब आंबेडकर				
(1) Gopal Ganesh Agarkar (2) Dr. Babasaheb Ambedkar (3) Justice Mr. Ranade (4) Mahatma Jyotirao Phule 38. संयुक्त महाराष्ट्र चळवळीला पार्ठिबा म्हणून कोणी केंद्र सरकारच्या अर्थगंत्री पादाचा राजीनामा दिला ? (1) यशवंतराव चव्हाण (2) बाळासाहेब खेर (3) सी.डी. देशमुख (4) के.एम. पात्रेकर Who resigned from the post of Finance Minister of India to support the Sanyukta Maharashtra movement ? (1) Yeshwantrao Chavan (2) Balasaheb Kher (3) C.D. Deshmukh (4) K.M. Pannikar 39 रोजी कोचना येथे तीव्र भूकंप आला होता. (1) 30 सर्टेबर 1963 (2) 26 जुलै 1965 (3) 11 मार्च 1966 (4) 11 डिसेंबर 1967 A severe earthquake occurred at Koyna on (1) 30 September, 1963 (2) 26 July, 1965 (3) 11 March, 1966 (4) 11 December, 1967 40. पुढील विधानांपैकी कोणते विधान/विधाने अयोग्य आहे/आहेत ? अ. पवनार शहर काटेपूर्णा नदीच्या काठावर वसलेले आहे. ब. वेनगंगा नदीची उपानदी आहे. (4) फक्त अ (2) फक्त ब (3) अ आणि ब (4) अ, ब आणि क Which of the following statements is/are incorrect? a. Pavnar city is located on the bank of river Katepurna. b. The origin of river Wainganga is at Betul. c. Terna is a tributary of river Manjira. (1) Only a (2) Only b		(3)	न्यायमूर्ति रानडे	(4)	महात्मा ज्योतिराव फुले				
38. संयुक्त महाराष्ट्र चळवळीला पार्ठिंबा म्हणून कोणी केंद्र सरकारच्या अर्थमंत्री पादाचा राजीनामा दिला ? (1) यशवंतराव चव्हाण (2) बाळासाहेब खेर (3) सी.डी. देशमुख (4) के.एम. पात्रेकर Who resigned from the post of Finance Minister of India to support the Sanyukta Maharashtra movement ? (1) Yeshwantrao Chavan (2) Balasaheb Kher (3) C.D. Deshmukh (4) K.M. Pannikar 39 रोजी कोयना येथे तीब्र मूकंप आला होता. (1) 30 सप्टेंबर 1963 (2) 26 जुलै 1965 (3) 11 मार्च 1966 (4) 11 डिसेंबर 1967 A severe earthquake occurred at Koyna on (1) 30 September, 1963 (2) 26 July, 1965 (3) 11 March, 1966 (4) 11 December, 1967 40. पुढील विधानांपैकी कोणते विधान/विधाने अयोग्य आहे/आहेत ? अ. पवनार शहर काटेपूर्णा नदीच्या काठावर वसलेले आहे. ब. वैनगंगा नदीचा उगम बेतुल या टिकाणी आहे. क. तेरणा ही मांजरा नदीची उपनदी आहे. (1) फक्त अ (2) फक्त ब (3) अ आणि ब (4) अ, ब आणि क Which of the following statements is/are incorrect? a. Pavnar city is located on the bank of river Katepurna. b. The origin of river Wainganga is at Betul. c. Terna is a tributary of river Manjira. (1) Only a		Write the name of social reformer who was impressed by writings of Thomas Paine.							
38. संयुक्त महाराष्ट्र चळवळीला पाठिंबा म्हणून कोणी केंद्र सरकारच्या अर्थमंत्री पादाचा राजीनामा दिला ? (1) यशवंतराव चव्हाण (2) बाळासाहेब खेर (3) सी.डी. देशमुख (4) के.एम. पात्रेकर Who resigned from the post of Finance Minister of India to support the Sanyukta Maharashtra movement ? (1) Yeshwantrao Chavan (2) Balasaheb Kher (3) C.D. Deshmukh (4) K.M. Pannikar 39		(1)	Gopal Ganesh Agarkar	(2)	Dr. Babasaheb Ambedkar				
(1) यशवंतराव चव्हाण (2) बाळासाहेब खेर (3) सी.डी. देशमुख (4) के.एम. पान्नेकर Who resigned from the post of Finance Minister of India to support the Sanyukta Maharashtra movement? (1) Yeshwantrao Chavan (2) Balasaheb Kher (3) C.D. Deshmukh (4) K.M. Pannikar 39 रोजी कोयना येथे तीव्र भूकंप आला होता. (1) 30 सर्टेबर 1963 (2) 26 जुलै 1965 (3) 11 मार्च 1966 (4) 11 डिसेंबर 1967 A severe earthquake occurred at Koyna on (1) 30 September, 1963 (2) 26 July, 1965 (3) 11 March, 1966 (4) 11 December, 1967 40. पुढील विधानांपैकी कोणते विधान/विधाने अयोग्य आहे/आहेत ? अ. पवनार शहर काटेपूर्णा नदीच्या काठावर वसलेले आहे. ब. वैनगंगा नदीचा उगम बैतुल या ठिकाणी आहे. क. तेरणा ही मांजरा नदीची उपनदी आहे. (1) फक्त अ (2) फक्त ब (3) अ आणि ब (4) अ, ब आणि क Which of the following statements is/are incorrect? a. Pavnar city is located on the bank of river Katepurna. b. The origin of river Wainganga is at Betul. c. Terna is a tributary of river Manjira. (1) Only a (2) Only b		(3)	Justice Mr. Ranade	(4)	Mahatma Jyotirao Phule				
(3) सी.डी. देशमुख (4) के.एम. पानेकर Who resigned from the post of Finance Minister of India to support the Sanyukta Maharashtra movement? (1) Yeshwantrao Chavan (2) Balasaheb Kher (3) C.D. Deshmukh (4) K.M. Pannikar 39.	38.	सयुक	त महाराष्ट्र चळवळीला पाठिंबा म्हणून कोणी केंद्र	सरकार	च्या अर्थमंत्री पादाचा राजीनामा दिला ?				
Who resigned from the post of Finance Minister of India to support the Sanyukta Maharashtra movement? (1) Yeshwantrao Chavan (2) Balasaheb Kher (3) C.D. Deshmukh (4) K.M. Pannikar 39		(1)	यशवंतराव चव्हाण	(2)	बाळासाहेब खेर				
Maharashtra movement ? (1) Yeshwantrao Chavan (2) Balasaheb Kher (3) C.D. Deshmukh (4) K.M. Pannikar 39 रोजी कोयना येथे तीव्र भूकंप आला होता. (1) 30 सप्टेंबर 1963 (2) 26 जुलै 1965 (3) 11 मार्च 1966 (4) 11 डिसेंबर 1967 A severe earthquake occurred at Koyna on (1) 30 September, 1963 (2) 26 July, 1965 (3) 11 March, 1966 (4) 11 December, 1967 40. पुढील विधानांपैकी कोणते विधान/विधाने अयोग्य आहे/आहेत ? अ. पवनार शहर काटेपूर्णा नदीच्या काठावर वसलेले आहे. ब. वैनगंगा नदीचा उगम बैतुल या ठिकाणी आहे. क. तेराणा ही मांजरा नदीची उपनदी आहे. (1) फक्त अ (2) फक्त ब (3) अ आणि ब (4) अ, ब आणि क Which of the following statements is/are incorrect? a. Pavnar city is located on the bank of river Katepurna. b. The origin of river Wainganga is at Betul. c. Terna is a tributary of river Manjira. (1) Only a (2) Only b		(3)	सी.डी. देशमुख	(4)	के.एम. पान्नेकर				
39 रोजी कोयना येथे तीव्र भूकंप आला होता. (1) 30 सप्टेंबर 1963 (2) 26 जुलै 1965 (3) 11 मार्च 1966 (4) 11 डिसेंबर 1967 A severe earthquake occurred at Koyna on (1) 30 September, 1963 (2) 26 July, 1965 (3) 11 March, 1966 (4) 11 December, 1967 40. पुढील विधानांपैकी कोणते विधान/विधाने अयोग्य आहे/आहेत ? अ. पवनार शहर काटेपूर्णा नदीच्या काठावर वसलेले आहे. ब. वैनांगा नदीचा उगम बैतुल या ठिकाणी आहे. क. तेरणा ही मांजरा नदीची उपनदी आहे. (1) फक्त अ (2) फक्त ब (3) अ आणि ब (4) अ, ब आणि क Which of the following statements is/are incorrect? a. Pavnar city is located on the bank of river Katepurna. b. The origin of river Wainganga is at Betul. c. Terna is a tributary of river Manjira. (1) Only a (2) Only b				Minis	ster of India to support the Sanyukta				
39 रोजी कोयना येथे तीव्र भूकंप आला होता. (1) 30 सप्टेंबर 1963 (2) 26 जुलै 1965 (3) 11 मार्च 1966 (4) 11 डिसेंबर 1967 A severe earthquake occurred at Koyna on (1) 30 September, 1963 (2) 26 July, 1965 (3) 11 March, 1966 (4) 11 December, 1967 40. पुढील विधानांपैकी कोणते विधान/विधाने अयोग्य आहे/आहेत ? अ. पवनार शहर काटेपूर्णा नदीच्या काठावर वसलेले आहे. ब. वैनगंगा नदीचा उगम बैतुल या ठिकाणी आहे. क. तेरणा ही मांजरा नदीची उपनदी आहे. (1) फक्त अ (2) फक्त ब (3) अ आणि ब (4) अ, ब आणि क Which of the following statements is/are incorrect? a. Pavnar city is located on the bank of river Katepurna. b. The origin of river Wainganga is at Betul. c. Terna is a tributary of river Manjira. (1) Only a (2) Only b		(1)	Yeshwantrao Chavan	(2)	Balasaheb Kher				
(1) 30 सप्टेंबर 1963 (2) 26 जुलै 1965 (3) 11 मार्च 1966 (4) 11 डिसेंबर 1967 A severe earthquake occurred at Koyna on		(3)	C.D. Deshmukh	(4)	K.M. Pannikar				
(3) 11 मार्च 1966 (4) 11 डिसेंबर 1967 A severe earthquake occurred at Koyna on	39.		रोजी कोयना येथे तीव्र भूकंप आला हो	 ता.					
A severe earthquake occurred at Koyna on (1) 30 September, 1963 (2) 26 July, 1965 (3) 11 March, 1966 (4) 11 December, 1967 40. पुढील विधानांपैकी कोणते विधान/विधाने अयोग्य आहे/आहेत ? अ. पवनार शहर काटेपूर्णा नदीच्या काठावर वसलेले आहे. ब. वैनगंगा नदीचा उगम बैतुल या ठिकाणी आहे. क. तेरणा ही मांजरा नदीची उपनदी आहे. (1) फक्त अ (2) फक्त ब (3) अ आणि ब (4) अ, ब आणि क Which of the following statements is/are incorrect? a. Pavnar city is located on the bank of river Katepurna. b. The origin of river Wainganga is at Betul. c. Terna is a tributary of river Manjira. (1) Only a (2) Only b		(1)	30 सप्टेंबर 1963	(2)	26 ਯੁਲੈ 1965				
(1) 30 September, 1963 (2) 26 July, 1965 (3) 11 March, 1966 (4) 11 December, 1967 40. पुढील विधानांपैकी कोणते विधान/विधाने अयोग्य आहे/आहेत ? अ. पवनार शहर काटेपूर्णा नदीच्या काठावर वसलेले आहे. ब. वैनगंगा नदीचा उगम बैतुल या ठिकाणी आहे. क. तेरणा ही मांजरा नदीची उपनदी आहे. (1) फक्त अ (2) फक्त ब (3) अ आणि ब (4) अ, ब आणि क Which of the following statements is/are incorrect? a. Pavnar city is located on the bank of river Katepurna. b. The origin of river Wainganga is at Betul. c. Terna is a tributary of river Manjira. (1) Only a (2) Only b		(3)	11 मार्च 1966	(4)	11 डिसेंबर 1967				
(3) 11 March, 1966 (4) 11 December, 1967 40. पुढील विधानांपैकी कोणते विधान/विधाने अयोग्य आहे/आहेत ? अ. पवनार शहर काटेपूर्णा नदीच्या काठावर वसलेले आहे. ब. वैनगंगा नदीचा उगम बैतुल या ठिकाणी आहे. क. तेरणा ही मांजरा नदीची उपनदी आहे. (1) फक्त अ (2) फक्त ब (3) अ आणि ब (4) अ, ब आणि क Which of the following statements is/are incorrect? a. Pavnar city is located on the bank of river Katepurna. b. The origin of river Wainganga is at Betul. c. Terna is a tributary of river Manjira. (1) Only a (2) Only b		A se	evere earthquake occurred at Koyna o	on	·				
40. पुढील विधानांपैकी कोणते विधान/विधाने अयोग्य आहे/आहेत ? अ. पवनार शहर काटेपूर्ण नदीच्या काठावर वसलेले आहे. ब. वैनगंगा नदीचा उगम बैतुल या ठिकाणी आहे. क. तेरणा ही मांजरा नदीची उपनदी आहे. (1) फक्त अ (2) फक्त ब (3) अ आणि ब (4) अ, ब आणि क Which of the following statements is/are incorrect? a. Pavnar city is located on the bank of river Katepurna. b. The origin of river Wainganga is at Betul. c. Terna is a tributary of river Manjira. (1) Only a (2) Only b		(1)	30 September, 1963	(2)	26 July, 1965				
अ. पवनार शहर काटेपूर्णा नदीच्या काठावर वसलेले आहे. ब. वैनगंगा नदीचा उगम बैतुल या ठिकाणी आहे. क. तेरणा ही मांजरा नदीची उपनदी आहे. (1) फक्त अ (2) फक्त ब (3) अ आणि ब (4) अ, ब आणि क Which of the following statements is/are incorrect? a. Pavnar city is located on the bank of river Katepurna. b. The origin of river Wainganga is at Betul. c. Terna is a tributary of river Manjira. (1) Only a (2) Only b		(3)	11 March, 1966	(4)	11 December, 1967				
ब. वैनगंगा नदीचा उगम बैतुल या ठिकाणी आहे. क. तेरणा ही मांजरा नदीची उपनदी आहे. (1) फक्त अ (2) फक्त ब (3) अ आणि ब (4) अ, ब आणि क Which of the following statements is/are incorrect? a. Pavnar city is located on the bank of river Katepurna. b. The origin of river Wainganga is at Betul. c. Terna is a tributary of river Manjira. (1) Only a (2) Only b	40.	पुढील विधानांपैकी कोणते विधान/विधाने <i>अयोग्य</i> आहे/आहेत ?							
क. तेरणा ही मांजरा नदीची उपनदी आहे. (1) फक्त अ (2) फक्त ब (3) अ आणि ब (4) अ, ब आणि क Which of the following statements is/are incorrect? a. Pavnar city is located on the bank of river Katepurna. b. The origin of river Wainganga is at Betul. c. Terna is a tributary of river Manjira. (1) Only a (2) Only b			वैनगंगा नदीचा उगम बैतुल या ठिकाणी आहे.	***************************************					
(3) अ आणि ब (4) अ, ब आणि क Which of the following statements is/are incorrect? a. Pavnar city is located on the bank of river Katepurna. b. The origin of river Wainganga is at Betul. c. Terna is a tributary of river Manjira. (1) Only a (2) Only b			•						
Which of the following statements is/are incorrect? a. Pavnar city is located on the bank of river Katepurna. b. The origin of river Wainganga is at Betul. c. Terna is a tributary of river Manjira. (1) Only a (2) Only b									
 a. Pavnar city is located on the bank of river Katepurna. b. The origin of river Wainganga is at Betul. c. Terna is a tributary of river Manjira. (1) Only a (2) Only b 		(3)	अ आणि ब	(4)	अ, ब आणि क				
 b. The origin of river Wainganga is at Betul. c. Terna is a tributary of river Manjira. (1) Only a (2) Only b 		Whi	ich of the following statements is/are	incor	rect?				
c. Terna is a tributary of river Manjira. (1) Only a (2) Only b			Pavnar city is located on the bank of	of rive	r Katepurna.				
(1) Only a (2) Only b			The origin of river wainganga is at Terna is a tributary of river Maniir	a.					
(A) - b - J o					Only b				
			a and b	(4)	a, b and c				

41.	Two equal forces acting at a right angle having resultant $\sqrt{32}$, then find magnitude of each force.								
	(1)	2							
	(2)	4							
	(3)	8							
	(4)	16							
42.		•	_	e 50 kN are 200 mm apart from each of couple formed by these two forces?					
	(1)	5 kN m	(2)	10 kN m					
	(3)	20 kN m	(4)	0					
43.	When two surfaces are in contact with each other during motion, it requires more force even on horizontal surface to move which is due to friction. But frictional force does not depend on								
	(1)	(1) Normal reaction from surface							
	(2)	Force tending to cause motion							
	(3)) Roughness of surface							
	(4)	Area of contact between two	o surfaces	•					
44.	The ratio of static friction to dynamic friction is always								
	(1)	·							
	(2)	less than one							
	(3)	greater than one							
	(4)	None of the above							
45.	Wha pass	What is the moment of inertia of a quarter circle with respect to x-axis which is passing through the center of a circle whose radius is 20 mm?							
	(1)	$3\cdot14~\mathrm{cm}^4$							
	(2)	$0.878~\mathrm{cm}^4$							
	(3)	$0.785~\mathrm{cm}^4$							
	(4)	$0.393~\mathrm{cm}^4$							
	कामार	गती जागा / SPACE FOR BOUGH	Work						

46. In three dimensional analysis, equilibrium of parallel forces along x-axis requires

- (1) $\sum Fx = 0$, $\sum Fy = 0$, $\sum Fz = 0$
- (2) $\sum Fx = 0$, $\sum Mx = 0$, $\sum My = 0$
- (3) $\sum \mathbf{F}\mathbf{x} = 0$, $\sum \mathbf{M}\mathbf{y} = 0$, $\sum \mathbf{M}\mathbf{z} = 0$
- (4) $\sum Fx = 0$, $\sum Fy = 0$, $\sum Mz = 0$

47. If a body acted upon by a number of co-planar non-concurrent forces it may

- (1) rotate about itself without moving
- (2) move in any one direction rotating about itself
- (3) be completely at rest
- (4) All of the above

48. Radial component of velocity and acceleration in curvilinear motion are

- (1) $\dot{\mathbf{r}}$ and $\ddot{\mathbf{r}} \mathbf{r} (\dot{\theta})^2$
- (2) $\mathbf{r}\dot{\theta}$ and $\mathbf{r}\ddot{\theta} + 2\dot{\mathbf{r}}\dot{\theta}$
- (3) \ddot{r} and $r\dot{\theta}$
- (4) rand rθ

49. If the horizontal range of a projectile is maximum then the angle of the projectile must be _____ with horizontal.

(1) 90°

 $(2) 75^{\circ}$

(3) 45°

 $(4) 30^{\circ}$

50. "The rate of change of momentum is directly proportional to the impressed force, and takes place in the same direction, in which the force acts". This is the statement of

- (1) D'Alembert's principle
- (2) Newton's first law of motion
- (3) Newton's second law of motion
- (4) Newton's third law of motion

- 51. Ball A of mass 1 kg moving with velocity of 2 m/s strikes directly on a ball of mass 2 kg rest. What are the velocities of the two balls after impact if coefficient of restitution is 0.5?
 - (1) 0 and 1 m/s

(2) 1 and 2 m/s

(3) 2 and 2 m/s

- (4) 1 and 1 m/s
- 52. A ball which is thrown upward at an angle 'α', returns to the ground describing a parabolic path during its flight
 - (1) Vertical component of velocity remains constant
 - (2) Horizontal component of velocity remains constant
 - (3) Speed of the ball remains constant
 - (4) Kinetic energy of the ball remains constant
- 53. What will be the deformation of the spring if a block of weight 100 N is kept on it. Take stiffness of spring 1000 N/m.
 - (1) 10 m
- (2) 0.1 m
- $(3) \quad 0.01 \text{ m}$
- (4) 1 m
- 54. If u_1 and u_2 are the velocities of two moving bodies in the same direction before impact and V_1 and V_2 are their velocities after impact, then coefficient of restitution is given by
 - (1) $\frac{V_1 V_2}{u_1 u_2}$

 $(2) \quad \frac{V_2 - V_1}{u_1 - u_2}$

(3) $\frac{u_1 - u_2}{V_1 - V_2}$

 $(4) \quad \frac{u_2 + u_1}{V_2 + V_1}$

55.	Hov	How much is the carbon content (%) in high tensile steel?									
	(1)	0.7 - 0.9%	(2)		- 0.5%	(3)	0.6 - 0.8		.) 0.8	3 – 1.0%	
56.	How much is the measuring capability of digital planimeter w.r.t. an ordina planimeter?										
	(1)	10 times larg	er			(2)	2 times la	arger			
	(3)	20 times larg	er			(4)	100 times	•			
57.	Type of surveying in which the shape of the earth is taken into account is known as										
	(1)	Topographica	l surve	ey		(2)	Cadastra				
	(3)	Geodetic surv	eying			(4)	Plane sur	veying			
58.	Out	of the following	g, whic	ch is cl	ay stone	with v	esicular te	xture?			
	(1)	Laterite	(2)	Sand	stone	(3)	Limeston	e (4)	Gra	anite	
5 9.	Wha	it is carbon con	tent (%) in r	nild stee	el ?				· ·	
	(1)	$2{\cdot}0-3{\cdot}0$				(2)	0.5 - 0.8				
	(3)	0.05 - 0.1				(4)	0.15 - 0.3				
60.	Out of the following, which is the component of G.I.S.?										
	(1)	Computer sys	$_{ m tem}$			(2)	Software				
	(3)	Data manager	ment	•		(4)	All of the	above			
61.	By which rule, the total error in latitude and departure is distributed in proportion to the lengths of the traverse legs?										
	(1)	Transit Rule				(2)					
	(3)	Third Rule				(4)	Simpson's	Rule			
62.	What is the minimum live load (N/m ²) of floor area to be considered for residential buildings?										
	(1)	3000	(2)	4000		(3)	2000	(4)	500	0	
63.		component in				_		•		-	
	(1)	Dicalcium Sili	ally Sul	ength but also the ultimate strength is (2) Tricalcium Silicate							
	(3)	Tricalcium Alı		te		(4)	Tetra Cal			errite	
64.	In O	rdinary Portlar	nd cem	ent th	e percen	tage of	lime const	itutes :			
	(1)	60 to 67	(2)	50 to		(3)	74 to 78	(4)	51 t		

65.		a governor, the vertical distance willibrium speed is called	e which	the sleeve travels due to change in						
	(1)	Sleeve distance	(2)	Sleeve fit						
	(3)	Sleeve height	(4)	Sleeve lift						
66.		e thermal conductivity of	va	ries with square root of the absolute						
	(1)	solid	(2)	liquid						
	(3)	gas	(4)	None of the above						
67.		Name the boiler which can generate superheated steam without additional accessories.								
	(1)	(1) Cornish boiler								
	(2)	(2) Locomotive boiler								
	(3)	Lancashire boiler								
	(4)	Cochran boiler								
68.	The	The power transmitted by belt drive is designed on the basis of								
	(1)									
	(2)	angle of lap on the larger pulley								
	(3)									
	(4)	- · · ·								
 69.	A fo	our bar chain has								
	(1)	all turning pairs								
	(2)	all sliding pairs								
	(3)	one turning pair and others are s	aliding po	iro						
	(4)	one sliding pair and others are to								
5 211		श्रुती जागा / SPACE FOR POLICE WOR		119						

70.	In low carbon steels, the presence of small quantities of sulphur improves										
	(1)	Weldability	(2)	Formability							
	(3)	Machinability	(4)	Hardenability							
71.	blow	is the property of a ws like hammer blows.	material	to resist fracture due to high impact							
	(1)	Fatigue									
	(2)	Creep									
	(3)	Toughness									
	(4)	Malleability									
72.		The casting produced by forcing molten metal under pressure into a permanent metal mould is called as casting.									
	(1)	(1) sand mould									
	(2)	(2) slush									
	(3)	3) die									
	(4)	All of the above									
73.	The process of removal of metal by rotating the cutter in the direction of travel of work piece is called										
	(1)	up milling									
	(2)	down milling									
	(3)	straddle milling									
	(4)	saw milling									
74.		is the process by which	h great	pressure is applied to a heated metal							
	bille	et or blank causing it to flow throu	igh a rest	tricted orifice.							
	(1)	Extrusion									
	(2)	Hot rolling									
	(3)	Tubing									
	(4)										

75. Find the current through resister $\mathbf{R_4}$ in the figure given below :

- $(1) \quad 0.6 \text{ A}$
- (2) 0.8 A
- $(3) \quad 0.5 \text{ A}$
- (4) 1.0 A
- **76.** Number of equations required to be analyzed in a given network by nodal analysis is equal to
 - (1) The number of independent loops
 - (2) One less than the number of loops
 - (3) The number of nodes
 - (4) One less than the number of nodes
- 77. Two capacitors of $80~\mu F$ and $50~\mu F$ are connected in series. Find the maximum energy stored in the circuit when 200~V at 50~Hz are applied across the series circuit.
 - (1) 1230 J

(2) 1·23 J

(3) 123 J

- (4) 980 J
- 78. The admittance of a branch with $\overline{Z} = 3 + j4$ ohm in an ac circuit is ___
 - (1) (0.3 j0.25) mho

(2) (0.6 + j0.8) mho

(3) (0.25 - j0.3) mho

- (4) (0.6 j0.8) mho
- **79.** Which of the following 3-phase systems is sometimes also called as 3-phase, 4-wire system?
 - (1) 3-phase star-connected
 - (2) 3-phase delta-connected
 - (3) 3-phase zig-zag connected
 - (4) any 3-phase system

-	4	_
	7	"

	_		
	٨.	L	

80.	Thr cur	aree similar resistors are connected in star across 400 V, 3-phase lines. The line rrent is 5 A. Calculate the value of each resistor.										
	(1)	$46.2~\Omega$	(2)	80 Ω								
	(3)	$138{\cdot}40~\Omega$	(4)	None of the above								
81.	In a	transformer, maximum voltage re	egulation	occurs at								
	(1)	leading power factor of the load										
	(2)	lagging power factor of the load										
	(3)	unity power factor of the load										
	(4)	None of the above										
82.	The	core of a transformer is assembled	l with th	in laminated sheets so as to								
	(1)	Reduce hysterisis loss										
	(2)	Reduce eddy current loss										
	(3)	Reduce both hysterisis and eddy	current :	losses								
	(4)	ensure good magnetic coupling be	etween p	orimary and secondary winding.								
83.		en a transformer is operating or roximately balanced by	on no l	oad the primary applied voltage is								
	a.	Primary Induced emf										
	b.	Secondary Induced emf										
	c.	Terminal voltage across the secon	ndary									
	d.	Voltage drop across the resistance	e and re	actance								
	Whi	ch statement/s is/are correct?										
	(1)	Only a	(2)	Only a and b								
	(3)	Only c and d	(4)	Only d								
84.	The	resistance and reactance in a serie	es R-C ci	rcuit are $7.5~\Omega$ each. In this circuit								
	(1)	voltage leads the current by 45°										
	(2)	current leads the voltage by 45°										
	(3)	voltage leads the current by 60°										
	(4)	current leads the voltage by 15°										

85. Find the Eigen values and Eigen vectors of the following matrix

Α

$$\begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix}$$

$$(1) \quad (-1, -6) \begin{cases} 1 \\ 2 \end{cases} \begin{cases} 2 \\ -1 \end{cases}$$

$$(2) \quad (1, 6) \begin{cases} 1 \\ -2 \end{cases} \begin{cases} -2 \\ 1 \end{cases}$$

(3)
$$(1,-6) \begin{cases} -1 \\ -2 \end{cases} \begin{cases} 2 \\ -1 \end{cases}$$
 (4) $(-1,6) \begin{cases} 1 \\ 2 \end{cases} \begin{cases} 2 \\ 1 \end{cases}$

86. Which of the following is the inverse of the matrix $A = \begin{bmatrix} 3 & 0 \\ 1 & 2 \end{bmatrix}$

(1)
$$\begin{bmatrix} \frac{1}{3} & 0 \\ -\frac{1}{6} & \frac{1}{2} \end{bmatrix}$$
 (2)
$$\begin{bmatrix} 0 & \frac{1}{6} \\ -\frac{1}{6} & \frac{1}{2} \end{bmatrix}$$

(3)
$$\begin{bmatrix} \frac{1}{3} & -\frac{1}{6} \\ \frac{1}{3} & \frac{1}{2} \end{bmatrix}$$
 (4) $\begin{bmatrix} \frac{1}{3} & 0 \\ 0 & \frac{1}{2} \end{bmatrix}$

87. Pick up the *incorrect* statement from the following options.

If A is Coefficient Matrix, K is Augmented Matrix and R is the Rank of Matrix

- (1) If $R(A) \neq R(K)$, the equations are inconsistent and have no solutions
- (2) If R(A) = R(K) = n, the equations are consistent and have unique solutions
- (3) If R(A) = R(K) < n, the equations are consistent and have infinite number of solutions
- (4) If R (A) = R (K) > n, the equations are consistent and have infinite number of solutions

88. If $u = x^y$ choose the correct option

$$(1) \quad \frac{\partial^3 u}{\partial x^2 \partial y} = \frac{\partial^3 u}{\partial x \partial y \partial x} \qquad (2) \quad \frac{\partial^3 u}{\partial x \partial y^2} = \frac{\partial^3 u}{\partial y \partial x \partial y}$$

(3)
$$\frac{\partial^3 \mathbf{u}}{\partial \mathbf{x} \partial \mathbf{y}^2} = \frac{\partial^3 \mathbf{u}}{\partial \mathbf{x}^2 \partial \mathbf{y}}$$
 (4)
$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} = \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2}$$

89. A function f(x, y) is said to be homogeneous of degree n in the variables x and y if it can be expressed in the form

 $(1) \quad x^n \ \varphi \ \left(\frac{y}{x}\right)$

(2) $y^n \phi\left(\frac{x}{y}\right)$

(3) Both (1) and (2)

(4) None of the above

90. Choose the correct option for the following sentences.

- a. A function f(x, y) is said to have a maximum value at x = a, y = b if f(a, b) > f(a + h, b + k)
- b. A function f(x, y) is said to have a maximum value at x = a, y = b if f(a, b) < f(a + h, b + k)
- (1) Both a and b are wrong
- (2) Both a and b are true
- (3) a is true, b is wrong
- (4) b is true, a is wrong

91. Match the following:

a. $\frac{\partial^2 \mathbf{u}}{\partial \mathbf{t}^2} = \mathbf{C} \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2}$

I. Two-dimensional Poisson equation

b. $\frac{\partial \mathbf{u}}{\partial t} = C \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2}$

- II. One-dimensional wave equation
- ${\rm c.} \qquad \frac{\partial^2 {\rm u}}{\partial {\rm x}^2} + \frac{\partial^2 {\rm u}}{\partial {\rm y}^2} = 0$
- III. One-dimensional heat equation
- d. $\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2} = \mathbf{f}(\mathbf{x}, \mathbf{y})$
- IV. Two-dimensional Laplace equation

a

b

 \mathbf{c}

d

- (1) II
- III
- Ι
- IV

- (2) II
- III
- IV
- Ι

- (3) IV
- Ι
- III
- II

- (4) IV
- III
- Π

92. Particular integral of

$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = 5$$
 is

 $(1) \quad \frac{2}{5}$

 $(2) \quad = \quad$

 $(3) \quad \frac{5}{2}$

 $(4) \quad \frac{3}{2}$

93. Cauchy's linear differential equation $x^n \frac{d^n y}{dx^n} + a_1 x^{n-1} \frac{d^{n-1} y}{dx^{n-1}} + ... + a_n y = f(x)$ can be reduced to linear differential equation with constant coefficient by using substitution

 $(1) \quad x = e^z$

 $(2) \quad y = e^z$

 $(3) \quad z = e^{x}$

 $(4) \quad \mathbf{z} = \mathbf{e}^{\mathbf{y}}$

94. To reduce the differential equation $(x + 5)^2 \frac{d^2y}{dx^2} - (x + y) \frac{dy}{dx} + y = 10x + 8$ to linear differential equation with constant coefficient, the substitution is

(1) $x + 5 = e^{-z}$

 $(2) \quad x + 5 = e^z$

(3) $z = e^{x+5}$

 $(4) \quad z = x + 5$

95. Given that

x :	4	4.2 4.4		4.6	4.8	5.0	5.2
log x:	1.3863	1.4351	1.4816	1.5261	1.5686	1.6094	1.6484

Evaluate $\int_{4}^{5\cdot 2} \log x \, dx$ by Trapezoidal Rule.

(1) 1.827887

(2) 1.827655

(3) 1.827867

(4) 1.82780

96. Given that

x	$\frac{1}{1+x^2}$
0	1
1	0.5
2	0.2
3	0.1
4	0.0588
5	0.0385
6	0.027

Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ using Simpson's $\frac{3}{8}$ rule.

- (1) 1·3574
- (2) 1.3569
- (3) 1.3576
- (4) 1.3571

97. The triple integral is used to compute

- (1) Volume
- (2) Area
- (3) Both Volume and Area
- (4) None of the above

98. Evaluate

$$\int_{0}^{1} \int_{y^{2}}^{1} \int_{0}^{1-x} x dz dx dy$$

(1) $\frac{2}{35}$

 $(2) \qquad \frac{4}{35}$

(3) $\frac{4}{17}$

 $(4) \qquad \frac{2}{17}$

99. Change the order of integration in

$$\int_{0}^{a} \int_{y}^{a} \frac{x}{x^2 + y^2} dx dy$$

(1)
$$\int_{0}^{a} \int_{0}^{x} \frac{x}{x^2 + y^2} dy dx$$

$$\cdot (2) \int_0^a \int_x^a \frac{x}{x^2 + y^2} dy dx$$

(3)
$$\int_{x}^{a} \int_{0}^{y} \frac{x}{x^{2} + y^{2}} dy dx$$

(4)
$$\int_{x}^{a} \int_{y}^{a} \frac{x}{x^2 + y^2} dy dx$$

100. Evaluate the following integral $\int_{0}^{a} \int_{0}^{a} \int_{0}^{a} (xy + xz + yz) dx dy dz$.

 $(1) \quad \frac{3}{4} \ a^3$

(2) $\frac{2}{3} a^5$

 $(3) \quad \frac{3}{4} \ a^5$

(4) $\frac{5}{3}$ a³

सूचना — (पृष्ठ 1 वरून पुढे....)

- (8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या "परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82" यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- (9) सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वत:बरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षाकक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

नमुना प्रश्न

- प्र. क्र. 201. सतीची चाल नष्ट करण्यासाठी कोणी मूलत: प्रयत्न केले ?
 - (1) स्वामी दयानंद सरस्वती
- (2) ईश्वरचंद्र विद्यासागर

(3) राजा राममोहन रॉय

(4) गोपाळकृष्ण गोखले

ह्या प्रश्नाचे योग्य उत्तर ''(3) राजा राममोहन रॉय'' असे आहे. त्यामुळे या प्रश्नाचे उत्तर ''(3)'' होईल, यास्तव खालीलप्रमाणे प्रश्न क्र. **201** समोरील उत्तर-क्रमांक ''(3)'' हे वर्तुळ पूर्णपणे छायांकित करून दाखविणे आवश्यक आहे.

प्र. क्र. 201. 1

अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तर-क्रमांक हा तुम्हाला स्वंतत्ररीत्या पुरविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.

कच्च्या कामासाठी जागा/SPACE FOR ROUGH WORK

परीक्षेचे नांव : महाराष्ट्र अभियांत्रिकी सेवा, संयुक्त (पूर्व) परीक्षा - 2019 परीक्षेचा दिनांक : 23 जून, 2019

विषय: मराठी, इग्रंजी, सामान्य अध्ययन आणि अभियांत्रिकी अभियोग्यता चाचणी

महाराष्ट्र लोकसेवा आयोगामार्फत "महाराष्ट्र अभियांत्रिकी सेवा, संयुक्त (पूर्व) परीक्षा - 2019" या स्पर्धा परीक्षेच्या प्रश्नपत्रिकेची प्रथम उत्तरतालिका उमेदवारांच्या माहितीसाठी संकेतस्थळावर प्रसिध्द करण्यात आली होती. त्यासंदर्भात उमेदवारांनी अधिप्रमाणित (Authentic) स्पष्टीकरण / संदर्भ देऊन पाठिवलेली लेखी निवेदने, तसेच तज्ज्ञांचे अभिप्राय विचारात घेऊन, आयोगाने उत्तरतालिका सुधारित केली आहे. या उत्तरतालिकेतील उत्तरे अंतिम समजण्यात येतील. यासंदर्भात आलेली निवेदने विचारात घेतली जाणार नाहीत व त्याबाबत कोणताही पत्रव्यवहार केला जाणार नाही, याची कृपया नोंद घ्यावी.

उत्तरतालिका - KEY

उत्तरत								
प्रश्न			तरे					
क्रमांक	संच A	संच B	संच C	संच D				
1	3	3	3	1				
2	2	1	1	3				
3	3	2	3	2				
4	1	1	2	3				
5	3	4	3	3				
6	1	2	1	2				
7	2	3	4	1				
8	1	1	3	4				
9	4	3	1	3				
10	3	3	2	1				
11	4	2	3	4				
12	4	4	4	2	3			
13	3	4	4	3				
14	3	3	4	2				
15	2	3	3	4				
16	3	1	4	1				
17	3	3	3	4				
18	1	1	1	3				
19	4	4	3	1				
20	1	3	1	3				
21	4	3	1	3				
22	4	3	#	4				
23	1	1	4	3				
24	1	2	3	4				
25	3	3	4	3				

प्रश्न	उत्तरे							
क्रमांक	संच A	संच B	संच C	संच D				
26	2	3	3	3				
27	3	4	4	1				
28	3	4	4	2				
29	1	1	1	3				
30	2	#	1	3				
31	3	4	3	4				
32	3	3	2	4				
33	4	4	3	1				
34	4	3	3	#				
35	1	4	1	4				
36	#	4	2	4				
37	4	1	3	1				
38	3	1	3	1				
39	4	3	4	3				
40	3	2	4	2				
41	2	3	4	2				
42	2	4	3	4				
43	4	3	2	2				
44	3	1	1	#				
45	1	4	1	1				
46	3	4	3	1				
47	4	2	3	2				
48	1	3	3	2				
49	3	2	2	1				
50	3	1	1	2				

Date: - 05thAug, 2019

प्रश्न	उत्तरे								
क्रमांक	संच A	संच B	संच C	संच D					
51	1	4	2	1					
52	2	3	4	1					
53	2	2	2	4					
54	2	1	#	1					
55	3	1	1	3					
56	4	3	1	3					
57	3	3	2	2					
58	1	3	2	3					
59	4	2	1	1					
60	4	1	2	#					
61	2	2	1	2					
62	3	4	1	4					
63	2	2	4	1					
64	1	#	1	2					
65	4	1	3	1					
66	3	1	3	3					
67	2	2	2	2					
68	1	2	3	2					
69	1	1	1	4					
70	3	2	#	3					
71	3	1	2	1					
72	3	1	4	3					
73	2	4	1	4					
74	1	1	2	1					
75	2	3	1	3					

प्रश्न	उत्तरे							
क्रमांक	संच A	संच B	संच C	संच D				
76	4	3	3	3				
77	2	2 2		1				
78	#	3	2	2				
79	1	1	4	2				
80	1	#	3	2				
81	2	2	1	3				
82	2	4	3	4				
83	1	1	4	3				
84	2	2	1	1				
85	1	1	3	4				
86	1	3	3	4				
87	4	2	1	2				
88	1	2	2	3				
89	3	4	2	2				
90	3	3	2	1				
91	2	1	3	4				
92	3	3	4	3				
93	1	4	3	2				
94	#	1	1	1				
95	2	3	4	1				
96	4	3	4	3				
97	1	1	2	3				
98	2	2	3	3				
99	1	2	2	2				
100	3	2	1 2: 05 th A 11	1				

Date: 05thAug, 2019

ने दर्शविलेले प्रश्न रद्द करण्यात आलेले आहेत.

→ संच क्रमांक

वेळ : 2 (दोन) तास

महाराष्ट्र बन्धापत्य आम्यामकी जोता भूख प्रीक्षा-2090 पर्योशा थि: 24/11/2019

प्रश्नपुस्तिका क्रमांक BOOKLET NO.

प्रश्नपुस्तिका - I

एकूण प्रश्न : 100

एकूण गुण : 200

स्थापत्य अभियांत्रिकी पेपर - 1

सूचना

(1) सदर प्रश्नपुस्तिकेत 100 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकडून लगेच बदलून घ्यावी.

आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा.

- वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे **न विसरता नमूद करावा.**
- या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवरील सूचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नमूद करावा. अशा प्रकारे उत्तरपत्रिकेवर उत्तरक्रमांक नमूद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. **ह्याकरिता फक्त** काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
- सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण **एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालविता पुढील** प्रश्नांकडे वळावे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- उत्तरपत्रिकेत एकदा नमुद केलेले उत्तर खोडता येणार नाही. नमुद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- ्रपस्तृत परीक्षेच्या उत्तरपत्रिकांचे मुल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील तसेच ''उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची दिलेल्या चार उत्तरांपैकी सर्वात योग्य उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील''.

ताकीद ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82'' यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनिधकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरुद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल

पुढील सूचना प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर पहा

कच्चा कामासाठी जागा/SPACE FOR ROUGH WORK

A

1.		For the formwork design, IS-456-2000 suggested the deviation from specified dimensions of cross section of columns and beams at											
	(1)	+12 mm, -6 mm	(2)										
	(3)	+ 25 mm , - 25 mm	(4)	+12 mm , -12 mm									
2.		e compressive strength of conc	rete increa	ses, then tensile strength is also increases, but at									
	(1)	Increasing rate	(2)	Decreasing rate									
	(3)	Constant rate	(4)	Exponential increasing rate									
3.		brick piece obtained by cutting half a stretcher are obtained o	_	ular portion of the brick such that half a headers ng cut faces is called as :									
	(1)	Queen closer	(2)	Mitred closer									
	(3)	King closer	(4)	Three-Quarter Bat									
4.				n cement content for moderate exposure used in respectively, as per IS-456-2000.									
	(1)	0.60 ; 220 kg/m ³	(2)	0.60 ; 240 kg/m ³									
	(3)	0.50 ; 250 kg/m^3	(4)	0.55 ; 260 kg/m^3									
5.	Whi	ich of the following tests is no t	a test for	evaluating workability of concrete ?									
	(1)	Slump Test	(2)	Flow Test									
	(3)	Compacting factor Test	(4)	Le-Chatellier Test									
6.	A w	vell caisson is a foundation fa	cilating s	tructure sunk in the ground or water ; which									
	(1)	Open at top as well as at bot	tom.										
	(2)	Open at top and closed at bo	ottom.										
	(3)	Open at bottom and closed a	it top.										

(4)

Closed at top as well as at bottom.

7.	One	of the following	g is not	t a principle	e relate	ed to t	hermal insulati	ion :						
	(1)	Thermal resist	tance is	directly p	oporti	onal t	o thickness of a	a materi	al.					
	(2)	Provision of a	ir gap _l	plays an im	portar	nt role	in thermal ins	ulation.						
	(3)	(3) Transfer of heat from outside to inside increases.												
	(4)	Thermal resist	tance of	f a building	depe	nds or	n orientation als	so.						
8.		are pro	vided a	as a protect	ive co	atings	to walls at its	top to	prevent seepage of					
	wat	er.												
	(1)	Corbels	(2)	Cornica		(3)	Copings	(4)	Floating					
9.		o had discover crete ?	ed dire	ect relation	nship	betwe	een water-cem	ent rati	o and strength of					
	(1)	Jon Abraham			(2)	Abr	aham Lincoln							
	(3)	Duff Abrams			(4)	Albe	ert Pinto							
10.	One	of the following	g measi	ure could r	ot red	uce o	r eliminate plas	tic shrir	ıkage cracks :					
10.	One (1)	of the following			ot red	uce o	r eliminate plas	tic shrir	ıkage cracks :					
10.		·	ry wind	d breakers.		uce o	r eliminate plas	tic shrir	nkage cracks :					
10.	(1)	Erect tempora	ry wind ld be p	d breakers. oured in la		uce o	r eliminate plas	tic shrir	nkage cracks :					
10.	(1) (2)	Erect tempora Concrete shou	ry wind ld be p ry roof	d breakers. oured in la	yers.		·	tic shrir	nkage cracks :					
10.	(1) (2) (3) (4)	Erect tempora Concrete shou Erect tempora	ry wind ld be p ry roof ne betw	d breakers. oured in la . veen placin	yers.	finish	ing.	tic shrir	nkage cracks :					
	(1) (2) (3) (4)	Erect tempora Concrete shou Erect tempora Reduce the tim	ry wind ld be p ry roof ne betw	d breakers. oured in la . veen placin	yers.	finish rd-stee	ing.							
	(1) (2) (3) (4) How (1)	Erect tempora Concrete shou Erect tempora Reduce the tim w much is the Co 0.5 - 0.8 load, a fire ris m ² with combi	ry wind Id be p ry roof ne between arbon ((2)	d breakers. oured in la veen placin Content (%) 0.8 - 1.5	yers. g and in ha	finish rd-stee (3)	ing. el ? 0.3 - 0.5 ncies, for a bu	(4)						
11.	(1) (2) (3) (4) How (1) Fire 100	Erect tempora Concrete shou Erect tempora Reduce the tim w much is the Co 0.5 - 0.8 load, a fire ris m ² with combi	ry wind ld be p ry roof ne betw arbon ((2) k crite ustible	d breakers. oured in la veen placin Content (%) 0.8 - 1.5	yers. g and in ha	finish rd-stee (3) ccupa 0 kg	ing. el ? 0.3 - 0.5 ncies, for a bu	(4)	0.15 - 0.3 having an area of					

13 .	The shear	force	and	bending	moment	are	zero	at	the	free	end	of	a	cantilever	beam,	if	it
	carries a:																

- Point load at the free end. (1)
- (2) Point load at the middle of its length.
- Uniformly distributed load over the whole length. (3)
- None of the above. (4)

14.	A steel rod of c/s area 100 mm ² and 1 m long is subjected to a tensile force of 40 kN.	What
	is the total elongation of the rod? If modulus of elasticity of steel is 200 GPa.	

- (1) $0.5 \, \mathrm{mm}$
- 0.7 mm (2)
- (3) 1.2 mm
- 2.0 mm (4)

- Varies by cubic law (1)
- Varies by parabolic law (2)

(3)Varies linearly (4)Is uniform throughout

- (2) $\frac{2\pi^2 EI}{I^2}$ (3) $\frac{4\pi^2 EI}{I^2}$
- (4)

- (1)50 MPa
- 100 MPa (2)
- 150 MPa (3)
- (4)200 MPa

 $\left(\frac{\text{le}}{\kappa}\right)$ is _____ for mild steel column.

(1)Less than 80

Greater than 90 (2)

120 - 160 (3)

(4)90 - 120

- **19**. Maximum deflection of a simply supported beam with the total uniformly distributed load 'W' is:
- (2) $\frac{5}{384} \frac{\text{Wl}^3}{\text{El}}$ (3) $\frac{\text{Wl}^3}{48\text{El}}$
- $(4) \quad \frac{5}{48} \frac{\text{Wl}^3}{\text{EI}}$
- 20. If a prismatic bar of uniform c/s 'A' and length 'L' is suspended from top, then the elongation of bar due to its self weight only is _____. Where, E is modulus of elasticity of bar material and γ is the density of bar.
 - (1)
- (2) $\frac{\gamma L^2}{2\Gamma}$
- $(3) \quad \frac{\gamma L^2}{5E}$
- The relation governing the simple bending of beam is: 21.

- (1) $\frac{\sigma}{y} = \frac{M}{E} = \frac{1}{R}$ (2) $\frac{\sigma}{y} = \frac{M}{R} = \frac{E}{I}$ (3) $\frac{\sigma}{E} = \frac{M}{I} = \frac{y}{R}$ (4) $\frac{\sigma}{y} = \frac{M}{I} = \frac{E}{R}$
- 22. A steel bar of 5 mm is heated from 15° to 40°C and it is free to expand. The bar will
 - (1)No stress

(2)Shear stress

(3)Tensile stress

- Compressive stress (4)
- A simply supported beam AB of span 10 m carries a point load W = 10 kN at C such that 23. AC=3 m and BC=7 m, maximum deflection occur _____
 - (1) at C

- at centre of span (2)
- (3)between A and C
- (4)between B and C
- Which of the following is true in the following figure? 24.

- Deflection at C = deflection at $B + \theta_B(L L')$ (1)
- Deflection at $C = \frac{L}{L} \times \text{ deflection at B}$ (2)
- Deflection at C = deflection at $B + \theta_C(L L')$ (3)
- Both (1) and (3) (4)

- 25. A statically indeterminate structure is the one which:
 - Cannot be analyzed at all (1)
 - Can be analyzed using equations of statics only (2)
 - (3)Can be analyzed using equations of statics and compatibility equations
 - Can be analyzed using equations of compatibility only (4)
- In the propped cantilever as shown in figure, the value of propped reaction 'R' will be :

- (2)
- (3)3 kN
- (4) 2 kN
- A fixed beam AB of length 'I' having constant flexural rigidity EI carries two loads P at its 27. third points C and D as shown in figure.

Numerically, maximum bending moment will occur:

- at C and at D and will be equal to $\frac{2}{9}$ PI (1)
- between C and D and will be equal to $\frac{Pl}{Q}$ (2)
- at A and at B and will be equal to $\frac{2}{9}$ Pl (3)
- between A and C and also between B and D and will be equal to $\frac{Pl}{9}$ (4)

- 28. Maximum deflection for a simply supported beam subjected to udl 'W' throughout span 'l' is:

- (3) $\frac{5}{384} \frac{\text{Wl}^3}{\text{El}}$ (4) $\frac{5}{384} \frac{\text{Wl}^4}{\text{El}}$
- 29. The moment required to rotate the near end of a prismatic beam through a unit angle without translation, the far end being simply supported, is given by:
 - (1)

- 30. A two hinged semi-circular arch of radius R carries a concentrated load W at the crown. Assuming uniform flexural rigidity, the horizontal thrust at each support will be:
 - (1)
- $(2) \quad \frac{W}{\pi} \qquad (3) \quad \frac{4}{3} \cdot \frac{WR}{\pi} \qquad (4)$
- A two span continuous beam ABC is as shown in figure below. The distribution factors at 31. joint B are:

- 0.4, 0.6(1)
- 0.6, 0.4 (2)
- (3)0.5, 0.5
- (4)0.55, 0.45
- 32. The deflection at the free end of a cantilever of rectangular cross-section due to certain loading is 0.8 cm. If the depth of the section is doubled keeping the width same, then the deflection at the free end due to the same loading will be:
 - (1)0.1 cm
- (2) 0.4 cm
- (3)0.8 cm
- (4)1.6 cm

33. What is the force in member AB of the pin-jointed frame as shown below?

P (tension) (1)

P (compression)

 $\frac{P}{\sqrt{2}}$ (compression)

- Zero (4)
- 34. A cantilever beam AB of span 'L' is subjected to a moment 'M' at the free end as shown in figure. What is the slope and deflection at free end B?

Consider same c/s and material. (i.e, EI is same)

- (2) $\frac{M}{LEI}$, $\frac{ML^2}{EI}$ (3) $\frac{2ML}{EI}$, $\frac{2ML^2}{EI}$ (4) $\frac{ML}{EI}$, $\frac{2ML^2}{EI}$

35. Influence line diagram for B.M. at P for cantilever as shown is:

(4)

36. Displacement coordinators for the beam are as shown in figure. The flexibility matrix is given by :

- $(1) \quad \frac{1}{E_1} \begin{bmatrix} 64/3 & -8 \\ -8 & 64 \end{bmatrix}$
- (2) $\frac{1}{E_1} \begin{bmatrix} 64/3 & 8\\ 8 & -64/3 \end{bmatrix}$
- (3) $\frac{1}{E_1} \begin{bmatrix} 64/3 & 8 \\ 8 & 4 \end{bmatrix}$
- (4) $\frac{1}{E_1} \begin{bmatrix} 4 & -8 \\ -8 & 64/3 \end{bmatrix}$
- **37.** Displacement coordinators for the beam are as shown in figure. The stiffness matrix is given by :

- *4m,2I* 4m,I * 8m,2I → *
- $(1) \quad E_1 \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix}$

(2) $E_1 \begin{bmatrix} 3 & -0.5 \\ -0.5 & 2 \end{bmatrix}$

 $(3) \quad E_1 \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$

(4) $E_1 \begin{bmatrix} 3 & 0.5 \\ 0.5 & 2 \end{bmatrix}$

- 38. A parabolic three hinged arch ABC is supporting Uniformly Distributed Load of 500 N/m over its entire span of 100 m. The center point 'B' is vertically 25 m high from supports A and C. The reactions shall be ______.
 - (1) 50 kN horizontal and vertical reactions at each support
 - (2) 25 kN horizontal and 50 kN vertical reaction at each support
 - (3) 50 kN horizontal and 25 kN vertical reaction at each support
 - (4) 25 kN horizontal and vertical reactions at each support
- 39. The stiffness matrix of a beam is given as:

$$K \times \begin{bmatrix} 12 & 4 \\ 4 & 5 \end{bmatrix}$$

Calculate the flexibility matrix.

Flexibility matrix will be _____.

 $(1) \quad \frac{K}{44} \begin{bmatrix} 12 & -4 \\ -4 & 5 \end{bmatrix}$

 $(2) \quad \frac{K}{44} \begin{bmatrix} 12 & 4 \\ 4 & 5 \end{bmatrix}$

- (3) $\frac{1}{44 \text{ K}} \begin{bmatrix} 12 & -4 \\ -4 & 5 \end{bmatrix}$
- $(4) \quad \frac{1}{44 \,\mathrm{K}} \begin{bmatrix} 5 & -4 \\ -4 & 12 \end{bmatrix}$

40. For a simply supported beam AB of span L with point load W at point C, Z m from left support, ILD for bending moment at $C(M_c)$ is :

12

- 41. The cable and arch are subjected to axial forces respectively as, _____.
 - (1) Tensile and Compressive
- (2) Compressive and Tensile
- (3) Tensile and Tensile
- (4) Compressive and Compressive
- **42.** Degree of static indeterminancy for the frame shown below is

(3) 6

(4) 5

43. For the continuous beam shown in figure, the ILD for reaction at D is _____

- $(1) \quad A \qquad B \qquad C \qquad D$
- $(2) \qquad A \qquad \qquad B \qquad \qquad C \qquad D$
- $(3) \qquad A \qquad B \qquad C \qquad D$
- (4) $A \stackrel{1/2 \triangle}{\longrightarrow} 3/4 \triangle$ $A \stackrel{1}{\longrightarrow} C$ $A \stackrel{1}{\longrightarrow} C$
- **44.** A cable of span 120 m and dip 10 m carries a load of 6 kN/m of horizontal span. The maximum tension in the cable is ______.

- (1) 1238.42 kN
- (2) 1138.42 kN
- (3) 1038.42 kN
- (4) 1338.42 kN

- **45.** For simply supported beam of span 10 m, Influence line diagram is drawn for bending moment at a section 4 m from left hand support. The maximum bending moment at the section due to moving point load of 160 kN is equal to _______.
 - (1) 640 kN-m
- (2) 960 kN-m
- (3) 384 kN-m
- (4) 400 kN-m

- **46.** Spot welding is used when two plates are placed :
 - (1) One below the other
- (2) One butting against the other
- (3) One next to other
- (4) At right angles to each other
- 47. An angle section can be used as purlin when slope of the roof truss is:
 - (1) between 40° and 70°
- (2) less than 30°

(3) greater than 30°

- (4) less than 45°
- 48. The purpose of stiffness in a plate girder is to:
 - (1) Prevent buckling of web
 - (2) Increase moment carrying capacity of the girder
 - (3) Reduce the shear stress
 - (4) Take care of bearing stress
- **49.** The anchor bolts are provided to check the :
 - (1) settlement of foundation
- (2) punching shear of base plate
- (3) uplift of base plate
- (4) moment of base plate
- 50. The economical range of spacing of roof trusses is:
 - (1) $\frac{1}{2}$ to $\frac{1}{3}$ of span

(2) $\frac{1}{2}$ to $\frac{1}{4}$ of span

(3) $\frac{1}{4}$ to $\frac{1}{6}$ of span

(4) $\frac{1}{3}$ to $\frac{1}{5}$ of span

51.		behaviour of a beam tionship?	column cr	oss se	ction	is expressed b	y which	h of the following			
	(1)	Moment - Curvature		(2)	Mor	nent - Axial co	mpressi	on			
	(3)	Axial compression - C	Curvature	(4)	Mor	nent - Curvatu	re - Axia	al compression			
52.		plate used as a connec s is called as :	ting piece	at the	inters	ection of two o	or more	members in a roof			
	(1)	Template (2)	Gusset pl	ate	(3)	Base plate	(4)	Shoe plate			
53.	The	thickness of the base pl	ate is dete	rmine	l from	the :					
	(1)	Flexural strength of the	ne plate.								
	(2)										
	(3)	3) Bearing strength of the concrete pedestal.									
	(4)	Punching criteria.									
54.	The	ınetal added at the joir	nt while w	elding	is kn	own as					
	(1)	weld metal		(2)	fille	:					
	(3)	fillet metal		(4)	all t	he above are co	orrect				
55.	Which of the following statement is correct for reducing web buckling due to diagonal compression?										
	(1)	Not providing web st	iffners to i	ncreas	e shea	r strength					
	(2)	Providing web stiffne	r to reduce	shear	stren	gth					
	(3)	Increasing depth to the	iickness ra	tio							
	(4)	Reducing depth to th	ickness rat	io							
56.	The wel	design shear stress fo ds ?	r which o	f the f	follow	ing weld type	s is san	ne as that for fillet			
	(1)	Plug weld only		(2)	Slot	weld only					
	(3)	Plug and Slot weld or	ปy	(4)	Slot	and Butt weld	only				

57. A column c/s 300 mm \times 400 mm, 2250 mm long fixed at one end and free at other end. The ratio of effective length to the least lateral dimension is:

16

- (1) 7.5
- (2) 15
- (3) 11.25
- (4) 9

58. In design of slab, as per 1S-456, what should be minimum percent of distribution steel if Fe 415 reinforcement is used ?

- (1) 0.12% of total cross section
- (2) 0.15% of total cross section
- (3) 0.50% of total cross section
- (4) 1% of total cross section

59. What is the maximum diameter of main reinforcement used in the slab of overall thickness 160 mm as per IS 456-2000?

- (1) 10 mm
- (2) 12 mm
- (3) 16 mm
- (4) 20 mm

60. For the design of staircase, self weight of waist slab is calculated as _____. Where, T=Tread, R=Riser and D=depth of waist slab, $\gamma_c=density$ of R.C.C.

 $(1) \quad \gamma_{i} \cdot D$

(2) $\gamma_c \cdot D \cdot \left(\frac{T}{\sqrt{R^2 + T^2}} \right)$

 $(3) \qquad \gamma_c \cdot \frac{\sqrt{T^2 + R^2}}{T}$

 $(4) \qquad \gamma_c \cdot D \cdot \frac{\sqrt{T^2 + R^2}}{T}$

61. What is the effective span of staircase supported at each end by edge of the landing slab, which spans parallel, with the risers, if width of both landings is 2.5 m and going of stair is 2.2 m (see fig.):

- (1) 7.2 m
- (2) 4.7 m
- (3) 4.2 m
- (4) 2.2 m

- In the design of retaining wall, both, active earth pressure and passive earth pressure is 62. considered due to soil available on both sides (with different heights) of R.C.C. retaining wall. If angle of repose, $\phi = 30^{\circ}$, then what will be the relation between coefficient of active earth pressure (K_a) and passive earth pressure (K_p) ?
 - (1) $K_a = \frac{1}{2}K_p$

- (2) $K_a = 3K_p$ (3) $K_a = 9K_p$ (4) $K_a = \frac{1}{9}K_p$
- What is the effective span of staircase, supported at each end by landing spanning parallel 63. with the risers, if the width of landing is 2.5 m, width of starting passage is 1.5 m and going of the stair is 2.2 m?
 - 6.2 m (1)
- (2)4.2 m
- 3.95 m (3)
- (4)4.5 m
- 64. The minimum area of tension reinforcement shall be not less than _____ for design of beam.

- (1) $\frac{0.87}{f_y}$ bD (2) $\frac{0.85}{f_y}$ bd (3) $\frac{0.67}{f_y}$ bD (4) $\frac{0.76}{f_y}$ bd
- For high yield strength deformed bars of grade Fe 500, the permissible stress in direct tension 65. and flexure tension shall be _____ used in working stress method.
 - (1) $0.87 f_{\rm u}$
- (2) $0.67 f_y$ (3) $0.55 f_y$
- **(4)** $0.48 f_y$
- If, in any given plane, one end of the column is unrestrained, its unsupported length 'I' shall 66. _____. Where 'b' is width and 'D' is depth of cross section in plane under not exceed consideration.
 - (1)
- (2) $\frac{100 \text{ b}^2}{\text{D}}$ (3) $\frac{100 \text{ D}}{\text{b}}$
- (4) $\frac{100 \text{ D}^2}{\text{h}}$
- If top of earth retained is horizontal, the coefficient of passive earth pressure for retaining 67. wall become :
 - (1) $C\rho = \frac{1-\sin\phi}{1+\sin\phi}$

(2) $C\rho = \frac{1 + \sin \phi}{1 - \sin \phi}$

(3) $C\rho = \frac{\sin \phi - 1}{\sin \phi + 1}$

(4) $C\rho = \frac{\sin \phi + 1}{\sin \phi - 1}$

- 68. A concrete beam is post-tensioned by a cable carrying an initial stress of 1000 N/mm², the slip at jacking end was observed to be 5 mm, modulus of steel is 210 kN/mm² and span of beam is 30 m; what is % of loss of stress due to anchorage?
 - (1) 3.5%
- (2) 2.5%
- (3) 1.5%
- (4) 4.0%

- **69.** The rate of increase of stress is large in case of :
 - (1) Bonded beams

- (2) Unbonded beams
- (3) Tensioned beams
- (4) Anchorage beams
- 70. A simply supported prestressed concrete beam of span 10 m is subjected to a point load of 10 kN at centre. Prestressing force of 2000 kN is applied through inclined tendon, zero eccentricity at support and 'e' at mid-span. To nullify the external point load effect, how much 'e' should be provided? Neglect the self weight of beam.
 - (1) 12.5 mm
- (2) 50 mm
- (3) 70 mm
- (4) 85 mm
- 71. In a prestressed concrete beam, the ratio of applied prestressing force (P) to the concrete capacity of the section in compression is known as
 - (1) Moment ratio (R)
- (2) Eccentricity Ratio (ϵ)
- (3) Reinforcement Ratio (m)
- (4) Efficiency factor (ρ)
- 72. The minimum transverse reinforcement in prestressed concrete beam is given by formula:

(1)
$$\frac{bS_V}{A_{S_V}} = \frac{0.87 f_y}{0.4}$$

(2)
$$\frac{A_{S_V}}{b S_V} = \frac{0.4}{0.87 f_y}$$

(3)
$$\frac{A_{S_V}}{0.87 f_y} = \frac{0.4}{b S_V}$$

(4)
$$\frac{b S_V}{0.87 f_y} = \frac{A_{S_V}}{0.4}$$

- 73. The net downward force of pre-stressed concrete beam with bent tendon is given as:
 - (1) $w-2p \sin\theta$

(2) $w + 2P \sin\theta$

(3) Zero

(4) 2

- 74. High tensile bars threaded at the ends are used in:
 - (1) Freyssinet system
- (2) Gifford Udall system
- (3) Lee McCall system
- (4) Magnel Blaton system
- 75. A post tensioned concrete beam is prestressed by means of three cables each 100 mm² area and stressed to 1100 MPa. All three cables are straight and located at an eccentricity of 50 mm. If modular ratio (m) = 6 and stress in concrete at the level of steel (f_c) = 5 MPa, then what is the loss of stress in cables due to elastic shortening if all cables are simultaneously tensioning and anchoring?
 - (1) 90 MPa
- (2) 60 MPa
- (3) 30 MPa
- (4) 0 MPa
- 76. At the time of initial tensioning, the maximum tensile stress f_{pi} immediately behind the anchorage shall not exceed ______ of the ultimate tensile strength f_{pu} of the wire or bar or strand.
 - (1) 55%
- (2) 69%
- (3) 76%
- (4) 85%
- 77. A system usually adopted in the production of pre-tensioned members like railway sleepers, poles, etc on large scale is ______.
 - (1) Magnel-Blaton system
- (2) P.S.C. Monowire system

(3) Hoyer system

- (4) Gifford-Udall system
- 78. On the areas immediately behind external anchorages, the permissible unit bearing stress on the concrete, after accounting for losses due to relaxation of steel, elastic shortening and seating of anchorages, shall not exceed ______.
 - (1) $0.48 f_{ci} \sqrt{\frac{A_{bearing}}{A_{punching}}}$ or $0.8 f_{cK}$ whichever is smaller
 - (2) $0.45 f_{ci} \sqrt{\frac{A_{\text{bearing}}}{A_{\text{punching}}}}$ or $0.40 f_{\text{cK}}$ whichever is smaller
 - (3) $0.48 f_{ci} \sqrt{\frac{A_{\text{bearing}}}{A_{\text{punching}}}}$ or $0.76 f_{\text{cK}}$ whichever is smaller
 - (4) $0.40 f_{ci} \sqrt{\frac{A_{\text{bearing}}}{A_{\text{punching}}}}$ or $0.78 f_{\text{cK}}$ whichever is smaller

79.

(1) $E_i - L_i - D(i, j)$

giving IF (i, j):

(2) $L_i - E_j - D(i, j)$

(3) $L_i - E_i - D(i, j)$

(4) $E_i - E_i$

80. A part of quality management system, that indicates the degree to which design quality is achieved in the actual construction work is called:

20

- (1) Quality Assurance
- (2) Quality of design
- (3) Quality of conformance
- (4) Quality of performance

81. Which among the following equipment found suitable for removing material from coffer dam, sewer manholes and well foundations?

- (1) Clamshell
- (2) Power shovel
- (3) Dragline
- (4) Back hoe

82. The following technique is not a quality control method ____

- (1) Inspection
- (2) Testing
- (3) Designing
- (4) Sampling

83. The PERT is a management tool, having expected mean time (t_m) , optimistic time (t_o) and persimistic time (t_p) , where the variance is given by

 $(1) \quad \frac{\mathsf{t}_{\mathsf{p}} - \mathsf{t}_{\mathsf{o}}}{6}$

(2) $\frac{t_o + 4 t_m + t_p}{6}$

(3) $(t_p - t_o)^2$

 $(4) \quad \left(\frac{t_p - t_o}{36}\right)^2$

84. When was the National Safety Council set up in India?

- (1) 1966
- (2) 1867
- (3) 1948
- (4) 1962

(1) (3) Whie	Even rough quantity estimate is a Bulk ordering is preferred Ordering on EOQ basis is preferred Even junior level staff is authorized wer Options: All of the above Only (c)	red to (2) (4)	order	(b) and (d)						
(c) (d) Answ (1) (3)	Ordering on EOQ basis is preference. Even junior level staff is authorized wer Options: All of the above Only (c)	(2) (4)	(a),	(b) and (d)						
(d) Ans (1) (3) Which	Even junior level staff is authorize wer Options: All of the above Only (c)	(2) (4)	(a),	(b) and (d)						
Ans: (1) (3) Which	wer Options: All of the above Only (c)	(2)	(a),	(b) and (d)						
(1) (3) Whie	All of the above Only (c)	(4)	. ,	. , , ,						
(3) Whie	Only (c)	(4)	. ,	. , , ,						
Whi			Non	e of the above						
	ch of the following is not a type of				(4) None of the above					
(1)										
(1) Jack Hammer (2) Shot drill (3) Drifter (4) Ripper										
		on eq	uipme	nt would you re	comme	end for compaction				
(1) Smooth - Wheeled Rollers			Shee	ep Foot Rollers						
(3)	Vibratory Rollers	pers								
A construction company has annual demand of 200 M.T. of steel. The annual cost of carrying per M.T. of steel is ₹ 2,000 and the cost to place an order is ₹ 50,000. What is the economic order quantity ?										
(1)	50 M.T. (2) 70. 7 M.T.		(3)	100 M.T.	(4)	40 M.T.				
—— Whie	ch are some of the factors to be con	 nsider	ed wł	nile designing sit	e layou	ıt ?				
(a)	Construction sequence	(b)	Qua	ntity of material	s to be	stored				
(c)	Parking of workers	(d)	Sani	tary facilities						
(e)	Soil conditions									
Ans	wer Options :									
(1)	(a), (b), (c) and (d)	(2)	All							
(3)	(a) and (b)	(4)	(a),	(b) and (e)						
0 (1) (1) — A PO (1) — W (2) (4) (4) (4) (4) (5) (7)	Vhide of control of co	Which among the following construction of cohesive soil? 1) Smooth - Wheeled Rollers 3) Vibratory Rollers 4 construction company has annual deper M.T. of steel is ₹ 2,000 and the cosorder quantity? 1) 50 M.T. (2) 70.7 M.T. Which are some of the factors to be construction sequence a) Construction sequence b) Parking of workers c) Parking of workers e) Soil conditions Answer Options: 1) (a), (b), (c) and (d)	Which among the following construction equal cohesive soil? 1) Smooth - Wheeled Rollers (2) 3) Vibratory Rollers (4) 4 construction company has annual demand over M.T. of steel is ₹ 2,000 and the cost to proder quantity? 1) 50 M.T. (2) 70.7 M.T. Which are some of the factors to be considered. Construction sequence (b) 2) Parking of workers (d) 2) Soil conditions 4 answer Options: 1) (a), (b), (c) and (d) (2)	Which among the following construction equipment of cohesive soil? 1) Smooth - Wheeled Rollers (2) Sheeled (3) S	Which among the following construction equipment would you re of cohesive soil? 1) Smooth - Wheeled Rollers (2) Sheep Foot Rollers 3) Vibratory Rollers (4) Tampers 4 Construction company has annual demand of 200 M.T. of steel. The per M.T. of steel is ₹ 2,000 and the cost to place an order is ₹ 50,000 order quantity? 1) 50 M.T. (2) 70.7 M.T. (3) 100 M.T. Which are some of the factors to be considered while designing site at the construction sequence (b) Quantity of material constructions (d) Sanitary facilities (e) Soil conditions Answer Options: 1) (a), (b), (c) and (d) (2) All of the above	Which among the following construction equipment would you recommend for cohesive soil? 1) Smooth - Wheeled Rollers (2) Sheep Foot Rollers 3) Vibratory Rollers (4) Tampers 4 construction company has annual demand of 200 M.T. of steel. The annual reformation and the cost to place an order is ₹ 50,000. Where the quantity? 1) 50 M.T. (2) 70.7 M.T. (3) 100 M.T. (4) Which are some of the factors to be considered while designing site layor and an experimental construction sequence (b) Quantity of materials to be considered while designing site layor and construction sequence (b) Sanitary facilities 2) Parking of workers (d) Sanitary facilities 3) Soil conditions 4) All of the above				

9 0.	The convergence in the Bisection method is											
	(1)	non lii	near	(2)	li	near		(3)	ex	ponential	(4)	all of the above
91.		curve i		_		ıle pa	ssing	throug	gh the	e coordinat	tes of a	straight line has a
	(1)	First o	rder	(2)	S	econd	order	(3)	Th	ird order	(4)	Fourth order
92.	The	The Bisection method is also known as										
	(1)	Quate	rnary	choppi	ng		(2)) Tr	i-regio	on choppin	g	
	(3)	Binary	chop	ping			(4)) He	x-reg	ion choppi	ng	
93.	New	ton - R	n meth	od h	as		·					
	(1) first order convergence						(2)) sec	ond o	order conve	ergence	
	(3) first order divergence						(4)) sec	cond o	order diver	gence	
94.	The	v a lue of	$\int_{-3}^{3} x^4$	dx by	usin	g Trap	ezoida	al rule	is:			
	(1)	112		(2)	13	14		(3)	11	3	(4)	115
95.	A river is 80 metre wide. The depth 'd' in metres at a distance ' x ' metres from one bank is given, by the following table :											s from one bank is
	x :	0	10	20	30	40	50	60	70	80		
	d:	0	4	7	9	12	15	14	8	3		
	Hen	ce the ar	ea of c	c/s of tl	ne riv	ver usi	ing Sir	npson	s rule	e is :		
	(1)	713 sq.	met.	(2)	71	l0 sq.	met.	(3)	715	5 sq. met.	(4)	716 sq. met.

96.	valu				ng with an initially n Raphson method							
	(1)	4	(2)	1		(3)	0	(4)	-1			
97.	Bise	ction method is l	based	on the repe	eated a	applica	ation of the		value property.			
	(1)	intermediate	(2)	mediate		(3)	convergent	(4)	divergent			
98.	In Gauss Jordan method which of the fol					ving t	ransformations	are allo	wed :			
	(1)	Diagonal trans	forma	tions	(2)	Col	umn transforma	ations				
	(3) Row transformations				(4)	Squ	are transformat	ions				
99.	A cross-section area of river flow can be calculated by using following fo								ormula			
	(1)	Simpson's rule			(2)	Trapezoidal rule						
	(3)	Both (1) and (2)		(4)	Thu	mb rule					
100.	Evaluate $\int_{0}^{2} \frac{1}{2x+1}$ by using Trapezoidal rule. Take number of intervals = 2 (with each step = 1).											
	(1)	0.867	(2)	0.933		(3)	1.267	(4)	1.333			

- o 0 o -

कच्चा कामासाठी जागा/SPACE FOR ROUGH WORK

सूचना — (पृष्ठ 1 वरून पुढे....)

- (8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यितिरिक्त उत्तरपित्रकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे. असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82'' यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- (9) मदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वत:बरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षाकक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

नमुना प्रश्न

Pick out the correct word to fill in the blank:

- Q. No. 201. I congratulate you _____ your grand success.
 - (1) for

(2) a

(वे) on

(4) about

ह्या प्रश्नाचे योग्य उत्तर ''(3) on'' असे आहे. त्यामुळे या प्रश्नाचे उत्तर ''(3)'' होईल. यास्तव खालीलप्रमाणे प्रश्न क्र. 201 समोरील उत्तर-क्रमांक ''(3)'' हे वर्तुळ पूर्णपणे छायांकित करून दाखविणे आवश्यक आहे.

す. 季. 201. ① ② **●** ④

अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तर-क्रमांक हा तुम्हाला स्वतंत्ररीत्या पुरविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.

कच्चा कामासाठी जागा/SPACE FOR ROUGH WORK

विषय: - स्थापत्य अभियांत्रिकी पेपर क्र. 1

महाराष्ट्र लोकसेवा आयोगामार्फत "महाराष्ट्र स्थापत्य अभियांत्रिकी सेवा (मुख्य) परीक्षा-2019 (स्थापत्य अभियांत्रिकी पेपर क्र. 1)" या स्पर्धा परीक्षेच्या प्रश्नपित्रकेची प्रथम उत्तरतालिका उमेदवारांच्या माहितीसाठी संकेतस्थळावर प्रसिध्द करण्यात आली होती. त्यासंदर्भात उमेदवारांनी अधिप्रमाणित (Authentic) स्पष्टीकरण / संदर्भ देऊन पाठिवलेली लेखी निवेदने, तसेच तन्ज्ञांचे अभिप्राय विचारात घेऊन, आयोगाने उत्तरतालिका सुधारित केली आहे. या उत्तरतालिकेतील उत्तरे अंतिम समजण्यात येतील. यासंदर्भात आलेली निवेदने विचारात घेतली जाणार नाहीत व त्याबाबत कोणताही पत्रव्यवहार केला जाणार नाही, याची कृपया नोंद घ्यावी.

उत्तरतालिका - KEY

प्रश्न	उत्तरे उत्तरे						
क्रमांक	<u>संच A</u>	संच B	 संच <i>C</i>	संच D			
1	1	2	3	3			
2	2	3	2	2			
3	3	2	3	3			
4	4 2		2	3			
5	4	3	3	3			
6	1 :		1	1			
7	7 3 4		2	2			
8	3	2	4	2			
9	3	2	2	2			
10	2	1	2	2			
11	2	3	3	1			
12	12 2 13 #		1	4			
13			#	1			
14	4	4	1	4			
15	4	1	4	2			
16	2	#	2	2			
17	2	4	2	1			
18	1	1	4	#			
19	2	1	1	4			
20	1	2	4	1			
21	4	4	4	4			
22	1	4	2	2			
23	4	2	1	4			
24	4	3	1	1			
25	3	4	4	2			

KEY प्रश्न		उन	तरे	
क्रमांक	संच A	संच B	संच C	संच D
26	1	3	3	1
27	3	4	2	4
28	4	1	1	4
29	1	2	4	3
30	2	3	3	1
31	3	1	1	3
32	1	4	1	4
33	4	1	3	3
34	1	1	4	1
35	1	4	3	4
36	3	3	2	2
37	4	2	1	3
38	4	1	2	4
39	4	4	4	2
40	2	4	1	4
41	1	1	2	1
42	4	2	4	1
43	2	4	4	4
44	2	2	4	2
45	3	3	3	3
46	1	4	1	4
47	2	1	2	4
48	1	1	3	4
49	3	2	4	1
50	4	1	1	1

प्रश्न		उ	तरे	
क्रमांक	संच A	संच B	संच C	संच D
51	4	3	4	1
52	2	#	1	3
53	1	2	#	3
54	#	4	4	#
55	4	4	2	2
56	3	3	3	2
57	2	3	1	3
58	1	2	3	4
59	4	3	3	3
60	4	3	2	3
61	3	4	2	2
62	4	1	4	4
63	3	2	3	2
64	2	2	2	2
65	3	4 2		2
66	2	4	4	4
67	2	2	4	1
68	1	1	3	3
69	1	3	1	3
70	1	1	#	1
71	3	3	1	#
72	#	4	1	1
73	1	1	1	1
74	3	1	4	3
75	4	1	1	3

प्रश्न		उन	 तरे		
क्रमांक	संच A	संच B	संच C	संच D	
76	3	#	3	1	
77	3	3	3	1	
78	1	3	3	4	
79	1	3	#	2	
80 3		2	2	2	
81			3	1	
82	3	3	3	3	
83	#	1	1	#	
84	1	1	3	3	
85	2	4	2	2	
86	4	#	4	1	
87	2	3	2	3	
88	3	1	1	4	
89	2	2	1	1	
90	2	1	2	2	
91	1	2	3	3	
92	3	3	3	3	
93	2	4	2	1	
94	4	3	3	2	
95	2	3	4	2	
96	3	2	1	2	
97	1	2	1	4	
98	3	1	2	1	
99	3	3	2	3	
100	2	2	3	3	

11th **June**, 2020

A

वेळ : 2 (दोन) तास

→ संच क्रमांक

महायाद्य अप्रापत्य आग्रामानिकी मेता (भुरम्) परिमा- २०१९ प्रमिश्चा निरं २४/११/२८९९ U13

प्रश्नपुस्तिका क्रमांक BOOKLET NO.

प्रश्नपुस्तिका - II

स्थापत्य अभियांत्रिकी पेपर - 2

एकूण प्रश्न : 100

एकूण गुण : 200

सूचना

(1) सदर प्रश्नपुस्तिकेत 100 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकडून लगेच वदलून घ्यावी.

(2) आपला परीक्षा–क्रमांक ह्या चौकोनांत न विसस्ता बॉल्पेनने लिहावा.

- (3) वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे **न विसरता नमूद करावा**.
- (4) या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपित्रकेवरील सूचनेप्रमाणे तुमच्या उत्तरपित्रकेवर नमूद करावा. अशा प्रकारे उत्तरपित्रकेवर उत्तरक्रमांक नमूद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकरिता फक्त काळ्या शाईचे बॉल्पेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
- (5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालविता पुढील प्रश्नाकडे वळवे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- (6) उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- (7) प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच ''उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची दिलेल्या चार उत्तरांपैकी सर्वात योग्य उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील''.

ताकीद

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या "परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82" यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनिधकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरुद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

पुढील सूचना प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर पहा

कच्चा कामासाठी जागा/SPACE FOR ROUGH WORK

1. The dieds effetosed by die controdis hi a lake die as follows		The areas enclosed	by the conto	ours in a lake a	re as follows
--	--	--------------------	--------------	------------------	---------------

Contour (m)

270 275 280 285 290

Area (m^2)

50 200 400 600 750

The volume of water between the contours 270 m and 290 m by trapezoidal formula

- (1) 6400 m^3
- (2) 8000 m^3
- 16000 m^3 (3)
- 24000 m^3 (4)

The R.L. of A is 98.75 m and the R.L. of B is 100.75 m. The horizontal distance between 2. A and B is 10.0 m. If the contour interval is 0.25 m, the distance of 99.00 m contour line from

- (1) $0.25 \, \mathrm{m}$
- (2) 1.25 m
- (3)2.0 m
- (4)2.5 m

3. When the height of signal is not the same as that of the height of instrument, then a correction applied for measurement is known as:

- (1) Curvature correction
- (2)Combined correction
- (3)Axis signal correction
- (4) Refraction correction

If h is the height above datum of the object, H be the flying height above datum and r be the 4. radial distance of the image of the object from principal point, then the relief displacement d is equal to:

- (1) $d = \frac{r \cdot h}{H}$ (2) $d = \frac{r \cdot H}{h}$ (3) $d = \frac{H \cdot h}{r}$ (4) $d = \frac{r}{H}$

5. In surveying optical square is used to setting out right angles. The horizon glass is placed at with the horizon sight and index glass is placed at an angle of an angle of ___ with the index sight.

- (1) 30° and 15°
- (2)60° and 45°
- (3)90° and 75°
- (4)120° and 105°

6. If an upgrade of +1.4% joins another upgrade of +0.4% and rate of change of grade is 0.1% per 20 m chain, then the length of vertical curve is :

- (1)200 m
- (2)360 m
- (3)400 m
- 80 m (4)

					_							
7.	A rectangular plot of land of area 0.45 hectare is represented on a map by a similar rectangle of area 5 cm ² . Calculate R.F. of the scale of the map. Draw a scale to read upto a single metre from the map.											
	(1)	1:5000	(2)	1:8000		(3)	1:9000	(4)	1:3000			
8.	Two points A and B were fixed on opposite bank of a river. The level was setup near A and the staff readings on A and B were observed as 1.800 m and 1.300 m, respectively. Thereafter level was setup near B and staff readings observed on B and A were found to be 0.350 m and 0.850 m, respectively. If the R.L. of A is 101.500 m, then R.L. of B is:											
	(1)	102.0 m	(2)	101.0 m		(3)	100.0 m	(4)	100.450 m			
9.	The	combined cor	rection d	ue to curvatu	re ar	nd refi	raction in (m) f	or a dista	ance of 2 kilometer			
	(1)	0.224 m	(2)	0.1346 m		(3)	0.1570 m	(4)	0.1750 m			
10.	In tacheometric surveying :											
	(a) The intercept of the staff is maximum when the staff is normal to the line of sight.											
	(b)	In the tangential system, the staff is kept normal to the line of sight.										
	(c)	If a tacheometer is fitted with an anallatic lens, its additive constant is non zero.										
	(d)											
	Select the incorrect statement/statements from the above.											
	(1)	(a) only			(2)	(a) a	nd (b) only					
	(3)	(a), (b) and ((c) only		(4)	(a),	(b), (c) and (d)	only				
11.	Generally how much amount is provided in estimate as work charged establishment?											
	(1)	1 - 2%	(2)	$1 - 1\frac{1}{2}\%$		(3)	$2 - 2\frac{1}{2}\%$	(4)	2 - 4%			

- (1) 20%
- (2) 30%
- (3) 52%
- (4) 25%

13.		Capitalised value of a property fetching a net annual rent of ₹ 1,000 and highest rate of interest prevailing being 10% will be :											
	(1)	1,000	(2)	1,00,000	(3)	10,000	(4)	100					
14.	four		ed. The	total centre line				for each item from lated and for cross					
	(1)	½ breadth of	item at	each junction	(2)	1 full breadth	of item	at each junction					
	(3)	2 full breadth	of item	at each junction	(4)	no deduction	S						
15.	Whi	ich value is obta	ained by	dismantling the	buildi	ing ?							
	(1)	Book Value	(2)	Distress Value	(3)	Salvage Value	e (4)	Scrap Value					
16.				imate design calc ty is called as :	ulatio	n, quantities of	work, r	ates and cost of the					
	(1)	Administrativ	ve appro	oval	(2)	Technical san	ction						
	(3)	Expenditure	sanction		(4)	Official sanct	ion						
17.	Determine the capital sum to be invested to receive annual income of ₹1 lakh, if the rate of interest is 5%.												
	(1)	₹ 50 lakh	(2)	₹ 20 lakh	(3)	₹ 100 lakh	(4)	₹ 10 lakh					
18.	Which of the following methods is also called as out to out and in to in method?												
	(1)	Long wall an	d short	wall method	(2)	Centre line m	ethod						
	(3)	Plinth area m	nethod		(4)	Cubic conten	t metho	d					
19.	Deta	ailed specificati	on for a	n item of P.C.C. (1:2:	4) should inclu	de follo	wing points:					
	(1)	Quantity of n	naterial,	cost of different	mater	ials, work cond	ition.						
	(2)												
	(3)	3) Work conditions at site, BIS requirements, labour requirement and its cost.											
	(4)	Sources of ma	aterials,	instructions by P	WD,	abour requiren	ent.						

U13				•	•			A					
20.	A lo	oad of 625 T is ir	nposed	on a footing of	size 2 1	n×2 m.							
	lf it	is to be assum	ed that	t, stress at dept	h "d" i	s spread out a	t an ang	gle of 2 vertical to					
	1 horizontal, find out the depth 'd' at which the intensity of stress will be $\left(\frac{1}{9}\right)^{th}$ of the stress												
	at g	round level.											
	Cho	ose correct dept	h in m	etres from the fo	ollowin	g :							
	(1)	2 m	(2)	3 m	(3)	4 m	(4)	5 m					
21.	An	embankment ir	clayey	y soil of 5 m he	ight is	to be construc	ted usi	ng factor of safet					
	of 2	.5. It is to be as	sumed	that stability nu	mber is	$s = \frac{1}{45}$ and unit v	weight o	of soil is 18 kN/m ³					
	Find	the minimum	cohesiv	e strength (in kN	N/m^2)	which the soil s	hould h	ave.					
	Cho	ose correc t answ	ver froi	m the following	:								
	(1)	30	(2)	5	(3)	10	(4)	15					
22.	dep		l to be					m×0.3 m on sand					
	(1)	200 kN/m^2	(2)	1000 kN/m^2	(3)	500 kN/m^2	(4)	2000 kN/m^2					
23.	The	re were five inta	ict piec	es of rocks of le	ngths 1	50 mm, 200 mr	n, 75 m	0 m in rocky strata m, 50 mm, and 20 de rock sample is :					
	(1)	55.0%	(2)	67.5%	(3)	62.5%	(4)	40.0%					
24.				nple is 0.4. Usin pressure at rest in			the esti	mated value of the					
	(1)	0.5	(2)	0.7	(3)	0.3	(4)	1.0					
25.				oduces a stress odistance will be		N/m² at a dept	h of 1 n	n, then the stress a					

(2) 80 kN/m^2 (3) 40 kN/m^2 (4) 10 kN/m^2

(1) 20 kN/m^2

26.

Amount of compaction greatly affects:

	(1)	Water conten	t and M	aximum dry de	ensity						
	(2)	Saturation of	soil								
	(3)	None of the a	bove								
	(4)	All of the abo	ove								
27.	pure	ely cohesive soi	l having	uniform cohes	ion of 5	0 kN/sq. m up	to 10 m	It is embedded in depth. If adhesion on component will			
	(1)	500 kN	(2)	125 kN	(3)	250 kN	(4)	200 kN			
28.				ssion test a soil 00 mm², then th				cross-sectional area e :			
	(1)	75 kN/m ²	(2)	375 kN/m^2	(3)	133 kN/m ²	(4)	37.5 kN/m^2			
29.		allel. If the frict						eter and length, in arge in M to that of			
	(1)	0.50	(2)	0.25	(3)	2.0	(4)	4.0			
30.	Bernoulli's equation is derived making assumptions that :										
	(1)	The flow is u	niform a	and incompress	ible.						
	(2)	The flow is n	on-visco	ous, uniform an	d steady	y.					
	(3)	The flow is s	teady, n	on-viscous, inco	mpress	ible and irrotat	ional.				
	(4)	None of the a	above.								
31.	the a							be 3% in excess of head, the measured			
	(1)	3% excess	(2)	2% less	(3)	2% excess	(4)	1.5% excess			
			· · · · · · · · · · · · · · · · · · ·								
कळ	या का	मासाठी जागा/SI	PACE FO	OR ROUGH W	ORK			P.T.O.			

32.		niform body 3 60 m, then the				ı deep	floats in water	. If the c	lepth of immersion
	(1)	3.53 kN	` '			(3)		,	none of these
33.	For		v through		ipe, tl	te max			el to
	(1)	1.5 times the	average	velocity	(2)	2.0 t	imes the avera	ige veloc	rity
	(3)	2.5 times the		,	, ,		ne of the above		
34.	Coe	fficient of cont		s the ratio o					
	(1)	actual veloci	ty of jet a	at Vena coi	ntracta	to th	e theoretical v	elocity.	
	(2)	loss of head	in the or	ifice to the	head o	of wat	er available at	the exit	of the orifice.
	(3)	actual discha	arge thro	ugh an orii	fice to	the th	neoretical disch	arge.	
	(4)	area of jet at							
35.	Mod	del analysis					moving at si		ic speed is based
	(1)	Reynold Nu	mber		(2)	Frou	ade Number		
	(3)	Mach Numb	er		(4)	Eulo	er Number		
36.	A d	imensionless g	roup for	med with v	ariabl	es:			
		nass density), gth) is :	μ (dynan	nic viscosit	y), g (gravit	ational acceler	ation) ar	nd D (characteristic
	(1)	$D^{3/2}/\rho\mu g$	(2)	μ/ ρg ¹ 2 [) ³ ⁄ ₂	(3)	$/\rho g D^{3} 2$	(4)	$\rho^{1/2} \operatorname{Dg}^{1/2}$
37.		rectangular ch	nannel, ca	arrying a co	ertain	discha	arge at a depth	Y _o and	Froude number F _o ,
	(1)	F_{o}	(2)	$F_0^{-\frac{1}{2}}$		(3)	$E_{\alpha}^{-3}2$	(4)	F _o ² 3

(1) 0° (2) 90° (3) 135° (4) 180° 39. An air vessel in the delivery side of a reciprocating pump: (1) maintains steady discharge output. (2) prevents cavitation in the system. (3) enables suction head to be increased. (4) enables the pump to run at higher speed.	38.	In a reciprocating pump without air vessel, the friction head in the delivery pipe is maximum at the crank angle θ =?											
(1) maintains steady discharge output. (2) prevents cavitation in the system. (3) enables suction head to be increased. (4) enables the pump to run at higher speed. 40. For double acting reciprocating pump, there will be no flow into or from the air valve, when the crank angle is: (1) 39° 32' and 140° 28' (2) 39° 32 to 140° 28' (3) 0° to 39° 32' (4) 18° 34' to 161° 26' 41. The specific speed of a centrifugal pump has the dimensions of: (1) L ³ / ₄ T ⁻³ / ₂ (2) M ⁰ L ⁰ T ⁰ (3) M ⁻¹ / ₂ L ¹ / ₂ T ⁻¹ / ₄ (4) L ³ / ₄ T ⁻¹ / ₂ 42. The work saved by fitting an air vessel to a double acting reciprocating pump is: (1) 39.2% (2) 84.8% (3) 48.8% (4) 92.3% 43. Match the pair: (a) Run of river plant (i) Large storage (b) Reservoir plant (ii) Water pumped back to the head water tank (c) Pumped storage plant (iii) Sea water (d) Tidal plant (iv) No storage Answer Options: (a) (b) (c) (d) (1) (iii) (i) (iv) (ii) (2) (iv) (ii) (iii) (iii)				_, _,	0		90°			(3)	135°	(4)	180°
(2) prevents cavitation in the system. (3) enables suction head to be increased. (4) enables the pump to run at higher speed. 40. For double acting reciprocating pump, there will be no flow into or from the air valve, when the crank angle is: (1) 39° 32' and 140° 28' (2) 39° 32 to 140° 28' (3) 0° to 39° 32' (4) 18° 34' to 161° 26' 41. The specific speed of a centrifugal pump has the dimensions of: (1) \(\frac{1}{2}\frac{4}{4}\)\(\frac{1}{2}\frac{1}{2}\)\(\frac{1}{2	3 9.	An a	air ves	sel in	the d	eliver	y side o	of a r	ecipro	ocatin	g pump :		
(3) enables suction head to be increased. (4) enables the pump to run at higher speed. 40. For double acting reciprocating pump, there will be no flow into or from the air valve, when the crank angle is: (1) 39° 32' and 140° 28' (2) 39° 32 to 140° 28' (3) 0° to 39° 32' (4) 18° 34' to 161° 26' 41. The specific speed of a centrifugal pump has the dimensions of: (1) \(\frac{1}{L}\sqrt{4}\) \(\frac{1}{T}\sqrt{2}\) (2) \(\text{M}^0\) \(\text{L}^0\) \(\text{T}^{-1}\sqrt{2}\) (3) \(\text{M}^{-1}\sqrt{2}\) \(\text{L}^1\sqrt{2}\) \(\text{T}^{-1}\sqrt{4}\) (4) \(\frac{1}{A}\) \(\frac{1}{A}\) \(\text{T}^{-1}\sqrt{2}\) 42. The work saved by fitting an air vessel to a double acting reciprocating pump is: (1) \(39.2\)% (2) \(84.8\)% (3) \(48.8\)% (4) \(92.3\)% 43. Match the pair: (a) \(\text{Run of river plant}\) (i) \(\text{Large storage}\) (b) \(\text{Reservoir plant}\) (ii) \(\text{Water pumped back to the head water tank}\) (c) \(\text{Pumped storage plant}\) (ii) \(\text{Sea water}\) (d) \(\text{Tidal plant}\) (iv) \(\text{No storage}\) Answer \(\text{Options}:\) (a) \((\text{b}\)) \((\text{c}\)) \((\text{d}\)) (ii) \((\text{ii}\)) \((\text{ii}\)) \((\text{iii}\)) \(\text{iii}\)		(1)	mair	ntains	stead	y disc	charge	outp	ut.				
(4) enables the pump to run at higher speed. 40. For double acting reciprocating pump, there will be no flow into or from the air valve, when the crank angle is: (1) 39° 32' and 140° 28' (2) 39° 32 to 140° 28' (3) 0° to 39° 32' (4) 18° 34' to 161° 26' 41. The specific speed of a centrifugal pump has the dimensions of: (1) L ³ / ₄ T ⁻³ / ₂ (2) M ⁰ L ⁰ T ⁰ (3) M ^{-1/2} L ^{1/2} T ^{-1/4} (4) L ^{3/4} T ^{-1/2} 42. The work saved by fitting an air vessel to a double acting reciprocating pump is: (1) 39.2% (2) 84.8% (3) 48.8% (4) 92.3% 43. Match the pair: (a) Run of river plant (i) Large storage (b) Reservoir plant (ii) Water pumped back to the head water tank (c) Pumped storage plant (iii) Sea water (d) Tidal plant (iv) No storage Answer Options: (a) (b) (c) (d) (1) (iii) (i) (iv) (ii) (2) (iv) (ii) (iiii) (ii)		(2)	prev	ents o	cavitat	ion ir	ı the sy	stem	l .				
 40. For double acting reciprocating pump, there will be no flow into or from the air valve, when the crank angle is: (1) 39° 32' and 140° 28' (2) 39° 32 to 140° 28' (3) 0° to 39° 32' (4) 18° 34' to 161° 26' 41. The specific speed of a centrifugal pump has the dimensions of: (1) L³/4 T⁻³/2 (2) M⁰ L⁰ T⁰ (3) M^{-1/2} L^{1/2} T^{-1/4} (4) L³/4 T^{-1/2} 42. The work saved by fitting an air vessel to a double acting reciprocating pump is: (1) 39.2% (2) 84.8% (3) 48.8% (4) 92.3% 43. Match the pair: (a) Run of river plant (i) Large storage (b) Reservoir plant (ii) Water pumped back to the head water tank (c) Pumped storage plant (iii) Sea water (d) Tidal plant (iv) No storage Answer Options: (a) (b) (c) (d) (1) (iii) (i) (iv) (ii) (2) (iv) (ii) (iiii) (i) 		(3)	enab	les sı	ıction	head	to be in	ncrea	ised.				
the crank angle is: (1) 39° 32' and 140° 28' (2) 39° 32 to 140° 28' (3) 0° to 39° 32' (4) 18° 34' to 161° 26' 41. The specific speed of a centrifugal pump has the dimensions of: (1) L ³ / ₄ T ⁻³ / ₂ (2) M ⁰ L ⁰ T ⁰ (3) M ⁻¹ / ₂ L ¹ / ₂ T ⁻¹ / ₄ (4) L ³ / ₄ T ⁻¹ / ₂ 42. The work saved by fitting an air vessel to a double acting reciprocating pump is: (1) 39.2% (2) 84.8% (3) 48.8% (4) 92.3% 43. Match the pair: (a) Run of river plant (i) Large storage (b) Reservoir plant (ii) Water pumped back to the head water tank (c) Pumped storage plant (iii) Sea water (d) Tidal plant (iv) No storage Answer Options: (a) (b) (c) (d) (1) (iii) (i) (iv) (ii) (2) (iv) (ii) (iiii) (i)		(4)	enab	les th	ne pun	np to	run at l	highe	er spe	ed.			
(3) 0° to 39° 32' (4) 18° 34' to 161° 26' 41. The specific speed of a centrifugal pump has the dimensions of: (1) L ³ / ₄ T ⁻³ / ₂ (2) M ⁰ L ⁰ T ⁰ (3) M ^{-1/2} L ^{1/2} T ^{-1/4} (4) L ³ / ₄ T ^{-1/2} 42. The work saved by fitting an air vessel to a double acting reciprocating pump is: (1) 39.2% (2) 84.8% (3) 48.8% (4) 92.3% 43. Match the pair: (a) Run of river plant (b) Reservoir plant (ii) Large storage (b) Reservoir plant (iii) Water pumped back to the head water tank (c) Pumped storage plant (iii) Sea water (d) Tidal plant (iv) No storage Answer Options: (a) (b) (c) (d) (1) (iii) (i) (iv) (ii) (2) (iv) (ii) (iiii) (i)	40.		For double acting reciprocating pump, there will be no flow into or from the air valve, when the crank angle is:										
41. The specific speed of a centrifugal pump has the dimensions of: (1) L ³ /4 T ⁻³ /2 (2) M ⁰ L ⁰ T ⁰ (3) M ^{-1/2} L ^{1/2} T ^{-1/4} (4) L ³ /4 T ^{-1/2} 42. The work saved by fitting an air vessel to a double acting reciprocating pump is: (1) 39.2% (2) 84.8% (3) 48.8% (4) 92.3% 43. Match the pair: (a) Run of river plant (i) Large storage (b) Reservoir plant (ii) Water pumped back to the head water tank (c) Pumped storage plant (iii) Sea water (d) Tidal plant (iv) No storage Answer Options: (a) (b) (c) (d) (1) (iii) (i) (iv) (iii) (2) (iv) (ii) (iii) (i)		(1)	39° 3	32' an	d 140°	28′			(2)	39° (32 to 140° 28	3'	
(1) L/4 T / 2 (2) M ⁰ L ⁰ T ⁰ (3) M - 1/2 L 1/2 T - 1/4 (4) L 3/4 T - 1/2 42. The work saved by fitting an air vessel to a double acting reciprocating pump is: (1) 39.2% (2) 84.8% (3) 48.8% (4) 92.3% 43. Match the pair: (a) Run of river plant (i) Large storage (b) Reservoir plant (ii) Water pumped back to the head water tank (c) Pumped storage plant (iii) Sea water (d) Tidal plant (iv) No storage Answer Options: (a) (b) (c) (d) (1) (iii) (i) (iv) (iii) (2) (iv) (ii) (iiii) (i)		(3)	0° to	39° 3	32'				(4)	18°	34' to 161° 2	6'	
(3) M ^{-1/2} L ^{1/2} T ^{-1/4} (4) L ^{3/4} T ^{-1/2} 42. The work saved by fitting an air vessel to a double acting reciprocating pump is: (1) 39.2% (2) 84.8% (3) 48.8% (4) 92.3% 43. Match the pair: (a) Run of river plant (i) Large storage (b) Reservoir plant (ii) Water pumped back to the head water tank (c) Pumped storage plant (iii) Sea water (d) Tidal plant (iv) No storage Answer Options: (a) (b) (c) (d) (1) (iii) (i) (iv) (ii) (2) (iv) (ii) (iii) (i)	41.	The	The specific speed of a centrifugal pump has the dimensions of :										
42. The work saved by fitting an air vessel to a double acting reciprocating pump is: (1) 39.2% (2) 84.8% (3) 48.8% (4) 92.3% 43. Match the pair: (a) Run of river plant (i) Large storage (b) Reservoir plant (ii) Water pumped back to the head water tank (c) Pumped storage plant (iii) Sea water (d) Tidal plant (iv) No storage Answer Options: (a) (b) (c) (d) (1) (iii) (i) (iv) (ii) (2) (iv) (ii) (iii) (i)		(1)	L ³ /4	$T^{-3/2}$					(2)	M^0	Γ_0 Γ_0		
(1) 39.2% (2) 84.8% (3) 48.8% (4) 92.3% 43. Match the pair: (a) Run of river plant (i) Large storage (b) Reservoir plant (ii) Water pumped back to the head water tank (c) Pumped storage plant (iii) Sea water (d) Tidal plant (iv) No storage Answer Options: (a) (b) (c) (d) (1) (iii) (i) (iv) (ii) (2) (iv) (ii) (iii) (i)		(3)	M ⁻¹	½ L/2	$(2 T^{-1/4})$				(4)	$L^{\frac{3}{4}}$	$T^{-1/2}$		
43. Match the pair : (a) Run of river plant (b) Reservoir plant (c) Pumped storage plant (d) Tidal plant (ii) Water pumped back to the head water tank (iii) Sea water (iv) No storage Answer Options: (a) (b) (c) (d) (1) (iii) (i) (iv) (ii) (2) (iv) (ii) (iii) (i)	42.	The	work	saveo	d by fi	tting a	an air v	essel	to a	doubl	e acting reci	procating 1	oump is :
(a) Run of river plant (b) Reservoir plant (c) Pumped storage plant (d) Tidal plant (ii) Water pumped back to the head water tank (iii) Sea water (iv) No storage Answer Options: (a) (b) (c) (d) (1) (iii) (i) (iv) (ii) (2) (iv) (ii) (iii) (i)		(1)	39.2	%	•	(2)	84.89	6		(3)	48.8%	(4)	92.3%
(b) Reservoir plant (ii) Water pumped back to the head water tank (c) Pumped storage plant (iii) Sea water (d) Tidal plant (iv) No storage Answer Options: (a) (b) (c) (d) (1) (iii) (i) (iv) (ii) (2) (iv) (ii) (iii) (i)	43.	Mat	ch the	pair	:							***	
(c) Pumped storage plant (iii) Sea water (d) Tidal plant (iv) No storage Answer Options: (a) (b) (c) (d) (1) (iii) (i) (iv) (ii) (2) (iv) (ii) (iii) (i)		(a)	Run	of riv	ver pla	ınt		(i)	Larg	ge stor	rage		
(c) Pumped storage plant (iii) Sea water (d) Tidal plant (iv) No storage Answer Options: (a) (b) (c) (d) (1) (iii) (i) (iv) (ii) (2) (iv) (ii) (iii) (i)		(b)	Rese	rvoir	plant			(ii)	Wat	er pu	mped back t	o the head	l water tank
(d) Tidal plant (iv) No storage Answer Options: (a) (b) (c) (d) (1) (iii) (i) (iv) (ii) (2) (iv) (ii) (iii) (i)		(c)	Pum	iped :	storage	e plar	ıt		Sea	water	•		
Answer Options: (a) (b) (c) (d) (1) (iii) (i) (iv) (ii) (2) (iv) (ii) (iii) (i)						-		(iv)	No:	storag	e		
(1) (iii) (i) (iv) (ii) (2) (iv) (ii) (iii) (i)				_				, ,					
(1) (iii) (i) (iv) (ii) (2) (iv) (ii) (iii) (i)			(a)	(b)	(c)	(d)							
(2) (iv) (ii) (iii) (i)		(1)											
					•								
					, ,								

(4) (iv) (iii) (i)

(ii)

44.	Kap	plan turbine is a propeller turbine in which	n the vanes fixed on the hub are:									
	(1)	non-adjustable (2)	adjustable									
	(3)	fixed (4)	none of the above									
45.	is 4		g reciprocating pump is 200 mm and its stroke The theoretical discharge for pump in									
	(1)	0.01256 (2) 12.56	(3) 1.256 (4) 0.1256									
46.	Which of the following statement is correct ?											
	(1)	(1) Centrifugal pump convert hydraulic energy into mechanical energy.										
	(2)	Reciprocating pumps convert mechanical energy into hydraulic energy by means of centrifugal force.										
	(3)	Centrifugal pumps convert mechanical energy into hydraulic energy by means of centrifugal force.										
	(4)	Reciprocating pumps convert hydraulic	energy into mechanical energy.									
47 .	The design flood commonly adopted in India for spillways of major projects is the :											
	(1)	Standard Project Flood. (2)	Flood with a Return Period of 100 years.									
	(3)	Probable Maximum Flood. (4)	Flood with a Return Period of 10,000 years.									
48.	The Thiessen polygon is :											
	(1)	a polygon obtained by joining adjoining	g raingauge station.									
	(2)	a representative area used for weighing	the observed station precipitation.									
	(3)	an area used in the construction of dep	th-area curve.									
	(4)	the descriptive term for the shape of hy	drograph.									
49.		a flow-mass curve study, the demand line d	rawn from a ridge in the curve did not intersect									
	(1)	the reservoir was not full at the beginni	ng.									
	(2)	the storage was not adequate.										
	(3)	the demand cannot be met by the inflov	v as the reservoir will not refill.									
	(4)	the reservoir is wasting water by spill.										

- 50. An instantaneous unit hydrograph is a direct run-off hydrograph :
 - (1) of 1 cm magnitude due to a rainfall excess of 1 h duration.
 - (2) that occurs instantaneously due to a unit rainfall excess of duration 'D' h.
 - (3) of unit rainfall excess precipitating instantaneously over the catchment.
 - (4) occurring at any instant in a long storm.
- 51. Evaporation losses from surface of a reservoir can be reduced by sprinkling:
 - (1) DDT

- (2) Acetyl alcohol
- (3) Potassium permanganate
- (4) None of the above
- 52. Dalton's law is given as:
 - (1) $E_L = C[e_s + e_a]$

(2) $E_L = C[e_a - e_s]$

 $(3) \quad E_L = C[e_s - e_a]$

- (4) $E_L = C[e_s + e_w]$
- 53. Direct run-off is made up of:
 - (1) Surface run-off, prompt interflow and channel precipitation.
 - (2) Surface run-off, infiltration and evapotranspiration.
 - (3) Overland flow only.
 - (4) Rainfall and Evaporation.
- **54.** The Rainfall Intensity of Light Rain is:
 - (1) Upto 2.5 mm/Hz

(2) Upto 3.0 mm/Hz

(3) Upto 5.00 mm/Hz

- (4) Upto 7.5 mm/Hz
- 55. A plot between rainfall intensity versus time is called as:
 - (1) hydrograph
- (2) mass curve
- (3) hyetograph
- (4) isohyet
- **56.** Which of the following is known as 'feeding bottle technique'?
 - (1) Drip Irrigation

(2) Sprinkler Irrigation

(3) Furrow Method

(4) None of the Above

57.	This type of dam requires strong abutment:											
	(1)	Gravity	(2)	Buttress		(3)	Arch	(4)	All above			
58.		en that the ba	-		-	and t	he duty of t	he canal	is 1000 hectares			
	(1)	0.864 cm	(2)	8.64 cm		(3)	86.4 cm	(4)	864 cm			
59.	In B	ligh Creep The	ory [L/I	H] is called	as:							
	(1)	Creep Length	l		(2)	Hydraulic Gradient						
	(3)	Coefficient of	Creep		(4)	Perc	olation Coeffi	cient				
60.	For is:	the upstream fa	ace of a	n earthen d	lam, tl	he mo	st adverse cor	ndition fo	r stability of slope			
	(1)	sudden draw	down		(2)	stea	dy seepage					
	(3)	during constr	ruction		(4)	slou	ghing of slope					
61.	Mea	nn Water Traini	ng mea	ns :					- Joseph Garage			
	(1)	Training for o	discharg	e	(2)	Trai	ning for deptl	n				
	(3)	3) Training for sediment				Trai	ning for flood					
62.	In spillway, when the tail water depth is less than the sequent depth and river bed is composed of stiff rock, which one of the following energy dissipation device is preferred?											
	(1)	Solid roller bu	ıcket		(2)	Slott	ed roller buck	ket				
	(3)	Ski jump buc	ket		(4)	Stilli	ing basin					
63.	The main cause of meandering is :											
	(1) presence of an excessive bed slope in the river.											
	(2)	degradation.										
	(3) the extra turbulence generated by the excess of river sediment during floods.											
	(4) none of the above.											

- **64.** Lacey gave V Q f relation as:
 - $(1) \qquad V = \left\lceil \frac{Qf^2}{160} \right\rceil^{\frac{1}{4}}$

 $(2) \qquad V = \left[\frac{Qf^2}{140}\right]^{\frac{1}{6}}$

 $(3) \qquad V = \left\lceil \frac{fQ^2}{160} \right\rceil^{\frac{1}{4}}$

- $(4) \qquad V = \left\lceil \frac{Qf}{140} \right\rceil^{\frac{1}{6}}$
- 65. Which of the following method is recommended by I.R.C. for design of flexible pavement?
 - (1) Group index method
- (2) Westergaard method

(3) CBR method

- (4) None of these
- 66. In case of pavement design:

Match the List - I (Type of carriageway) with List - II (Lane distribution factor) :

List - I

List - II

- (a) Undivided roads with two lane carriageway
- (i) 0.75
- (b) Undivided roads with single lane carriageway
- (ii) 1.0
- (c) Divided carriageway with four lanes each
- (iii) 0.45
- (d) Undivided roads with four lane carriageway
- (iv) 0.40

Answer Options:

- (a) (b) (c) (d)
- (1) (ii) (i) (iv) (iii)
- (2) (i) (ii) (iii) (iv)
- (3) (iii) (iv) (i) (ii)
- (4) (iv) (iii) (ii) (i)
- 67. As per current Viscosity Graded (VG) bitumen specifications in India (IS 73 : 2006, Third revision) the Absolute Viscosity of bitumen using vacuum capillary tube viscometer is determined at ______ temperature.
 - (1) 135°C
- (2) 25°C
- (3) 27°C
- (4) 60°C

- (b) Ductility test on bitumen is carried out at 27°C.
- (c) In softening point test on bitumen, rate of increase of temperature is 2°C per minute.
- (d) The rate of pulling of standard briquette mould specimen in ductility test is 15 mm per minute.

Answer Options:

- (1) (a) only
- (2) (b) only
- (3) (c) only
- (4) (a) and (d) only

71. The free mean speed on a roadway is found to be 70 kmph. Under stopped condition the average spacing between vehicles is 5.0 m. The capacity flow is:

- (1) 3500 vehicles/hour/lane
- (2) 3700 vehicles/hour/lane
- (3) 3200 vehicles/hour/lane
- (4) 3000 vehicles/hour/lane

72.		R' is the radio percentage) is e		rvature o	of a hil	ll roa	d, the maxi	imum gra	de compe	nsation
	(1)	65/R	(2)	75/R		(3)	85/R	(4)	95/R	
73.		n particular case ntroduced on t		• •						
	(1)	0.75%	(2)	1.3%		(3)	2.7%	(4)	3.25%	
74.		ase of erection arted from	-			_	_	about centi	e line, the	erection
	(1)	Left end			(2)	Both	ends			
	(3)	Right end			(4)	Non	e of the abov	ve		
75.		ne nature of riven as :	ver is at	a moderat	te bent	cond	ition then m	aximum V	depth of	scour is
	(1)	1.25 D	(2)	1.75 D		(3)	1.5 D	(4)	2 D	
76.	The	effective span	for main	girder in	case of	bridg	es is :			
	(1)	the distance	between	centres of	main g	girder	S.			
	(2)	the distance	between	centres of	cross g	girders	6.			
	(3)	the distance	between	centres of	road b	earing	gs.			
	(4)	the distance	between	centres of	bearin	g plat	es.			
77.	In w	which of the fol	lowing t	ype of Abu	ıtment:	s, win	g walIs are r	not provide	ed:	
	(1)	Gravity Abu	tments	-	(2)	U -	Abutments	_		
	(3)	Tee - Abutme	ents		(4)	Abu	tment Pier			
78.		le designing h be assumed to							l moving li	ve load
	(1)	1.0 m	(2)	1.2 m		(3)	1.5 m	(4)	1.75 m	

79.		per IRC recomm bridge should l			nimum	straiş	ght length of	approache	es on either side o			
	(1)	15 m	(2)	20 m		(3)	25 m	(4)	30 m			
80.		IRC Class A loa			ose to t	ail sp	acing betwee	n two suc	cessive trains shall			
	(1)	12.5 m	(2)	15.5 m		(3)	17.5 m	(4)	18.5 m			
81.		width of carriag		-				each lane	meaning the width			
	(1)	Class A	(2)	Class B		(3)	Class C	(4)	Class 70 R			
82.	The	effective linear	waterw	ay in mete	ers is gi	ven b	y :	42				
	(1)	$L = 0.75 \text{ V}^2$			(2)	L=	C√Q					
	(3)	$L = 1.811 \text{C} \sqrt{\zeta}$	Q		(4)	L = 0	CQ ²					
83.	Which of the following is not a patented explosive available in the market for tunnelling operations ?											
	(1)	PENT	(2)	RDX		(3)	TNT	(4)	NTT			
84.	Wh	ich shape of tun	nel is sı	uitable for	the pu	rpose	of navigation	?				
	(1)	Circular Shap	e		(2)	D SI	hape					
	(3)	Horse-shoe Sh	nape		(4)	Rect	angular Sha _l	oe .				
85.		ich of the follow nelling method		thod of tur	nnelling	g is be	ing gradually	replaced	by compressed air			
	(1)	Needle beam	method		(2)	Belgian method						
	(3)	Heading and	Bench 1	nethod	(4)	Fore	poling metho	od				

86.	Which section of tunnel is also known as segmental root section tunnel?											
	(1)	D section	(2)	Egg Shaped Section								
	(3)	Circular section	(4)	Rectangular Section								
87.	Whi	ich one of the following methods o	f tunr	nelling is used in hard rocks?								
	(1)	Fore poling method	(2)	Needle beam method								
	(3)	Heading and Benching method	(4)	Shield tunnelling method								
86. 87. 88. 90.	With reference to tunnelling which of the following factors, are to be considered for deciding the size of the shaft:											
	(1)	System used for hoisting	(2)	Size of the muck car								
	(3)	Quantity of muck to be lifted	(4)	Eventual use of the shaft								
89.	The	tunnelling method that is not suita	able ir	case of soft soil is:								
	(1)	Needle beam method	(2)	Full face method								
	(3)	Fore poling method	(4)	Liner plate method								
90.		procedure of removal of rock prot	rusior	ns by hammering immediately after the blasting								
	(1)	Mucking (2) Skimming	;	(3) Trimming (4) Scaling								
91.		ich one of the following Drift tilation?	meth	nod is time consuming but provides good								
	(1)	Top Drift Method	(2)	Bottom Drift Method								
	(3)	Centre Drift Method	(4)	Side Drift Method								
92.		ne sewer is to be designed for the owing material would you recomm		couring velocity of 5 m/sec, which among the								
	(1)	Cast iron sewer	(2)	Glazed brick sewer								
	(3)	Stone ware sewer	(4)	Cement concrete sewer								

93.	93. Select the incorrect pair from the following pairs of treatment unit and impurities removed, in waste water treatment system:											
	(a)	Grit chamber	- Sa	nd, silt								
	(b)	Aeration tank	- Su	spended in	npurit	ies						
	(c)	Skimming tank	- Fa	t and Greas	se							
	(d)	Screen	- C	oth, paper								
	Ans	wer Options :										
	(1)	(b) and (c)	(2)	(a) and (c)	(3)	Only (c)	(4)	Only (b)			
94.	Carbon monoxide is considered as most poisonous gas in Urban areas because :											
	(1)	It causes loss of	sense	of smell.								
	(2)	(2) It is carcinogenic in nature.										
	(3)	It reduces oxyge	en car	rying capac	ity of	blood	l.					
	(4)	It may cause co	njunc	tivitis.								
95.		ideal pathogenionism :	c indi	cator used	for b	acteri	al analysis of	water is	s exhibited by the			
	(1)	Escherichia coli			(2)	Enta	moeba histoly	tica				
	(3)	Salmonella typł	ıi		(4)	Vibr	o comma					
96.	In w	vater treatment pr	oce s s,	aeration of	f wate	r is ca	arried out to :					
	(1)	remove hardnes	s and	chlorides f	rom v	vater.						
	(2)	add calcium and	d mag	nesium to	water							
	(3)	remove gases lil	ke car	bon dioxide	, hyd	rogen	sulfide and to	add oxy	gen to water.			
	(4)	remove oxygen water.	from	water and	to ac	ld car	bon dioxide to	impart	test and odour to			
ch ==		माराठी जागा/९२४		ND DOLLCI		D <i>V</i>						

97.	The unit in which both sedimentation and digestion take place simultaneously is the:											
	(1)	Detritus tank		((2)	Imh	off tank					
	(3)	Skimming tan	k	•	(4)	Clar	ifier					
98.	The	sag in the disso	lved ox	ygen curve re	sult	s beca	ause of DO is a	function	n of :			
	(1)	Both addition	and de	pletion of oxy	/ger	from	the stream.					
	(2)	The rate of ad	dition o	of oxygen to t	he s	olutio	n.					
	(3)	(3) The rate of addition of oxygen is linear, but not that of depletion.										
	(4)	(4) The rate of organic substances introduced in the process.										
99.	Aluın as a coagulant is found to be effective between pH range of											
	(1)	8.0 to 10.0	(2)	8.5 to 10.5		(3)	6.5 to 8.5	(4)	7.0 to 9.0			
100.	In a	n oxidation por	nd, the s	ewage is mad	le n	on-pu	trescible prima	arily by	:			
	(1)	Algae bacteria	a symbi	osis only.								
	(2)	Bacterial oxid	ation o	nly.								
	(3)	Chemical oxid	dation o	only.								
	(4)	(4) Algae photosynthesis and algae bacteria symbiosis.										

- o 0 o -

कच्चा कामासाठी जागा/SPACE FOR ROUGH WORK

सूचना — (पृष्ठ 1 वरून पुढे...)

- (8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे. असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82'' यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षांच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- (9) सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वत:बरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षाकक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

नमुना	प्रश्न
-------	--------

Pick out the correct word to fill in the blank :	
--	--

Q. No. 201. I congratulate you _____ your grand success

(1) for

(2) at

(3) on

(4) about

ह्या प्रश्नाचे योग्य उत्तर ''(3) on'' असे आहे. त्यामुळे या प्रश्नाचे उत्तर ''(3)'' होईल. यास्तव खालीलप्रमाणे प्रश्न क्र. 201 समोरील उत्तर-क्रमांक ''(3)'' हे वर्तुळ पूर्णपणे छायांकित करून दाखिवणे आवश्यक आहे.

प्र. वह. 201. 1 2 4

अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तर क्रमांक हा तुम्हाला स्वतंत्ररोत्या पुरविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.

कच्च्या कामासाठी जागा/SPACE FOR ROUGH WORK

विषय: - स्थापत्य अभियांत्रिकी पेपर क्र. 2

महाराष्ट्र लोकसेवा आयोगामार्फत " महाराष्ट्र स्थापत्य अभियांत्रिकी सेवा (मुख्य) परीक्षा-2019 (स्थापत्य अभियांत्रिकी पेपर क्र. 2)" या स्पर्धा परीक्षेच्या प्रश्नपित्रकेची प्रथम उत्तरतालिका उमेदवारांच्या माहितीसाठी संकेतस्थळावर प्रसिध्द करण्यात आली होती. त्यासंदर्भात उमेदवारांनी अधिप्रमाणित (Authentic) स्पष्टीकरण / संदर्भ देऊन पाठिवलेली लेखी निवेदने, तसेच तज्ज्ञांचे अभिप्राय विचारात घेऊन, आयोगाने उत्तरतालिका सुधारित केली आहे. या उत्तरतालिकेतील उत्तरे अंतिम समजण्यात येतील. यासंदर्भात आलेली निवेदने विचारात घेतली जाणार नाहीत व त्याबाबत कोणताही पत्रव्यवहार केला जाणार नाही, याची कृपया नोंद घ्यावी.

उत्तरतालिका - KEY

				उत्तरता
प्रश्न	उत्तरे			
क्रमांक	संच A	संच B	संच C	संच D
1	2	#	2	#
2	2	3	4	3
3	3	4	#	4
4	1	1	3	1
5	4	1	1	4
6	1	2	4	2
7	4	4	2	4
8	1	1	1	2
9	#	2	4	1
10	4	4	1	1
11	3	1	3	3
12	3	3	1	2
13	3	3	2	3
14	1	2	4	4
15	4	2	3	2
16	2	2	2	3
17	2	1	1	1
18	1	3	3	1
19	2	4	2	2
20	3	3	1	#
21	2	#	3	2
22	2	1	#	2
23	1	2	2	4
24	2	2	4	#
25	#	2	2	1

KEY प्रश्न	उत्तरे			
क्रमांक	संच A	संच B	संच C	संच D
26	#	#	#	1
27	1	4	1	3
28	4	1	2	2
29	1	3	4	1
30	3	2	3	4
31	3	4	2	3
32	3	4	1	3
33	2	2	2	3
34	4	3	3	2
35	3	3	3	4
36	2	3	3	2
37	4	1	4	3
38	2	2	3	1
39	1	1	1	2
40	1	1	3	1
41	1	3	1	3
42	1	2	2	1
43	3	3	1	1
44	2	1	2	2
45	2	1	2	3
46	3	2	1	2
47	3	1	3	3
48	2	3	1	3
49	3	3	1	3
50	3	3	3	2

परीक्षेचा दिनांक: 24 नोव्हेंबर, 2019

प्रश्न	उत्त			
क्रमांक	संच A	संच B	संच <i>C</i>	संच D
51	4	3	2	1
52	3	3	3	1
53	1	2	4	4
54	1	4	3	3
55	3	1	3	3
56	1	3	2	2
57	#	1	#	3
58	3	#	1	#
59	3	3	3	3
60	1	3	3	3
61	3	2	3	3
62	3	3	3	1
63	3	3	3	3
64	2	1	1	1
65	3	1	4	2
66	2	1	2	1
67	4	2	1	2
68	1	2	2	3
69	2	2	2	4
70	2	4	2	1
71	1	2	4	2
72	2	4	1	4
73	4	3	3	2
74	2	2	4	3
75	3	3	2	4

प्रश्न	उत्तरे			
क्रमांक	संच A	संच B	संच C	संच D
76	4	3	1	1
77	3	1	4	1
78	3	4	3	4
79	1	3	3	3
80	4	1	2	3
81	1	4	3	2
82	2	2	1	2
83	4	4	3	4
84	2	4	1	4
85	4	3	4	3
86	1	3	4	2
87	3	2	2	4
88	3	2	4	1
89	2	4	3	2
90	4	3	3	3
91	3	1	2	3
92	2	2	2	3
93	4	2	3	1
94	3	3	1	1
95	1	3	1	2
96	3	4	3	4
97	2	4	3	4
98	1	1	2	2
99	3	1	4	3
100	4	3	4	3

11th **June**, 2020